Kachou Ikhlas, Dammak Mohamed, Auguste Sandy, Amiard Frederic, Daniel Philippe
Laboratoire de Physique Appliquée, Groupe de Physique des Materiaux Luminescents, Faculté des Sciences de Sfax, Département de Physique, BP 1171, Université de Sfax, 3018, Sfax, Tunisia.
Institut des Molécules et Matériaux du Mans - IMMM - UMR CNRS 6283, Le Mans Université, Avenue Olivier Messiaen-72085, Le Mans cedex9, France.
Dalton Trans. 2023 Dec 12;52(48):18233-18246. doi: 10.1039/d3dt03410k.
A series of SrY(MoO) phosphors doped and co-doped with Tb/Sm ions was synthesized to develop new optical temperature sensor materials. The structures, morphologies, and luminescent characteristics of these phosphors were thoroughly investigated. Luminescence spectra of mono-doped SrY(MoO) phosphors were measured under the excitation at 375 and 403 nm corresponding to direct excitation of Tb and Sm, respectively. The characteristic luminescence bands corresponding to electronic transitions of terbium and samarium ions were detected and investigated for different dopant concentrations. The emission spectrum of the Tb/Sm co-doped sample exhibited a total of five distinct emission peaks, indicating an energy transfer from Tb to Sm ions. The energy transfer efficiency from Tb ions to Sm ions was investigated in detail. At elevated temperatures, Tb and Sm exhibited distinct thermal sensitivities in their emission and excitation spectra, leading to evident thermochromic behavior. The fluorescence intensity ratio (FIR) was utilized with dual center to evaluate the temperature sensitivity of SrY(MoO):Tb/Sm phosphors. The temperature sensing mechanism relied on the emission band intensity ratios of the G → H, G → H, and G → H transitions of Sm in conjunction with the D → F transitions of Tb. This approach demonstrated high thermal sensitivity values, reaching up to 0.9% K. The studied nanoparticles exhibited sub-degree thermal resolution, making them suitable candidates for precise temperature-sensing applications.
合成了一系列掺杂和共掺杂Tb/Sm离子的SrY(MoO)磷光体,以开发新型光学温度传感器材料。对这些磷光体的结构、形貌和发光特性进行了深入研究。分别在对应于Tb和Sm直接激发的375和403 nm激发下测量了单掺杂SrY(MoO)磷光体的发光光谱。检测并研究了不同掺杂浓度下与铽和钐离子电子跃迁相对应的特征发光带。Tb/Sm共掺杂样品的发射光谱总共显示出五个不同的发射峰,表明存在从Tb到Sm离子的能量转移。详细研究了从Tb离子到Sm离子的能量转移效率。在升高的温度下,Tb和Sm在其发射和激发光谱中表现出明显的热敏感性,导致明显的热致变色行为。利用双中心荧光强度比(FIR)来评估SrY(MoO):Tb/Sm磷光体的温度敏感性。温度传感机制依赖于Sm的G→H、G→H和G→H跃迁的发射带强度比与Tb的D→F跃迁相结合。这种方法显示出高达0.9% K的高热敏度值。所研究的纳米颗粒具有亚度热分辨率,使其成为精确温度传感应用的合适候选材料。