Mikhailidi Aleksandra, Ungureanu Elena, Belosinschi Dan, Tofanica Bogdan-Marian, Volf Irina
Higher School of Printing and Media Technologies, St. Petersburg State University of Industrial Technologies and Design, 18 Bolshaya Morskaya Street, 191186 St. Petersburg, Russia.
"Ion Ionescu de la Brad" University of Life Sciences Iasi, 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania.
Gels. 2023 Nov 6;9(11):878. doi: 10.3390/gels9110878.
The incorporation of the metal phase into cellulose hydrogels, resulting in the formation of metallogels, greatly expands their application potential by introducing new functionalities and improving their performance in various fields. The unique antiviral, antibacterial, antifungal, and anticancer properties of metal and metal oxide nanoparticles (Ag, Au, Cu, CuO, ZnO, AlO, TiO, etc.), coupled with the biocompatibility of cellulose, allow the development of composite hydrogels with multifunctional therapeutic potential. These materials can serve as efficient carriers for controlled drug delivery, targeting specific cells or pathogens, as well as for the design of artificial tissues or wound and burn dressings. Cellulose-based metallogels can be used in the food packaging industry to provide biodegradable and biocidal materials to extend the shelf life of the goods. Metal and bimetallic nanoparticles (Au, Cu, Ni, AuAg, and AuPt) can catalyze chemical reactions, enabling composite cellulose hydrogels to be used as efficient catalysts in organic synthesis. In addition, metal-loaded hydrogels (with ZnO, TiO, Ag, and FeO nanoparticles) can exhibit enhanced adsorption capacities for pollutants, such as dyes, heavy metal ions, and pharmaceuticals, making them valuable materials for water purification and environmental remediation. Magnetic properties imparted to metallogels by iron oxides (FeO and FeO) simplify the wastewater treatment process, making it more cost-effective and environmentally friendly. The conductivity of metallogels due to Ag, TiO, ZnO, and AlO is useful for the design of various sensors. The integration of metal nanoparticles also allows the development of responsive materials, where changes in metal properties can be exploited for stimuli-responsive applications, such as controlled release systems. Overall, the introduction of metal phases augments the functionality of cellulose hydrogels, expanding their versatility for diverse applications across a broad spectrum of industries not envisaged during the initial research stages.
将金属相引入纤维素水凝胶中形成金属凝胶,通过引入新功能并改善其在各个领域的性能,极大地扩展了它们的应用潜力。金属和金属氧化物纳米颗粒(Ag、Au、Cu、CuO、ZnO、AlO、TiO等)独特的抗病毒、抗菌、抗真菌和抗癌特性,再加上纤维素的生物相容性,使得开发具有多功能治疗潜力的复合水凝胶成为可能。这些材料可用作控制药物递送的有效载体,靶向特定细胞或病原体,也可用于设计人工组织或伤口及烧伤敷料。基于纤维素的金属凝胶可用于食品包装行业,提供可生物降解和具有杀菌作用的材料,以延长商品的保质期。金属和双金属纳米颗粒(Au、Cu、Ni、AuAg和AuPt)可催化化学反应,使复合纤维素水凝胶能够用作有机合成中的高效催化剂。此外,负载金属的水凝胶(含有ZnO、TiO、Ag和FeO纳米颗粒)对染料、重金属离子和药物等污染物可表现出增强的吸附能力,使其成为水净化和环境修复的有价值材料。氧化铁(FeO和FeO)赋予金属凝胶的磁性简化了废水处理过程,使其更具成本效益且环保。由Ag、TiO、ZnO和AlO导致的金属凝胶的导电性可用于设计各种传感器。金属纳米颗粒的整合还允许开发响应性材料,其中金属性质的变化可用于刺激响应应用,如控释系统。总体而言,金属相的引入增强了纤维素水凝胶的功能,扩展了其在广泛行业中多种应用的通用性,而这些应用在最初的研究阶段并未被设想。