Chremos Alexandros, Mussel Matan, Douglas Jack F, Horkay Ferenc
Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
Department of Physics, University of Haifa, Haifa 3103301, Israel.
Gels. 2023 Nov 7;9(11):881. doi: 10.3390/gels9110881.
Polyelectrolyte gels provide a load-bearing structural framework for many macroscopic biological tissues, along with the organelles within the cells composing tissues and the extracellular matrices linking the cells at a larger length scale than the cells. In addition, they also provide a medium for the selective transportation and sequestration of ions and molecules necessary for life. Motivated by these diverse problems, we focus on modeling ion partitioning in polyelectrolyte gels immersed in a solution with a single type of ionic valence, i.e., monovalent or divalent salts. Specifically, we investigate the distribution of ions inside the gel structure and compare it with the bulk, i.e., away from the gel structure. In this first exploratory study, we neglect solvation effects in our gel by modeling the gels without an explicit solvent description, with the understanding that such an approach may be inadequate for describing ion partitioning in real polyelectrolyte gels. We see that this type of model is nonetheless a natural reference point for considering gels with solvation. Based on our idealized polymer network model without explicit solvent, we find that the ion partition coefficients scale with the salt concentration, and the ion partition coefficient for divalent ions is higher than for monovalent ions over a wide range of Bjerrum length (lB) values. For gels having both monovalent and divalent salts, we find that divalent ions exhibit higher ion partition coefficients than monovalent salt for low divalent salt concentrations and low lB. However, we also find evidence that the neglect of an explicit solvent, and thus solvation, provides an inadequate description when compared to experimental observations. Thus, in future work, we must consider both ion and polymer solvation to obtain a more realistic description of ion partitioning in polyelectrolyte gels.
聚电解质凝胶为许多宏观生物组织提供了一个承载结构框架,同时也为构成组织的细胞内的细胞器以及在比细胞更大长度尺度上连接细胞的细胞外基质提供了支撑。此外,它们还为生命所需离子和分子的选择性运输和隔离提供了一种介质。受这些多样问题的驱动,我们专注于对浸泡在具有单一离子价类型(即单价或二价盐)的溶液中的聚电解质凝胶中的离子分配进行建模。具体而言,我们研究凝胶结构内部离子的分布,并将其与本体(即远离凝胶结构处)进行比较。在这项初步探索性研究中,我们通过在不明确描述溶剂的情况下对凝胶进行建模,从而忽略凝胶中的溶剂化效应,不过我们明白这种方法可能不足以描述实际聚电解质凝胶中的离子分配。我们发现,尽管如此,这种类型的模型仍是考虑具有溶剂化作用的凝胶的自然参考点。基于我们理想化的无明确溶剂的聚合物网络模型,我们发现离子分配系数与盐浓度成比例,并且在广泛的 Bjerrum 长度(lB)值范围内,二价离子的离子分配系数高于单价离子。对于同时含有单价和二价盐的凝胶,我们发现对于低二价盐浓度和低 lB,二价离子表现出比单价盐更高的离子分配系数。然而,我们也发现有证据表明,与实验观察结果相比,忽略明确的溶剂以及由此产生的溶剂化作用,提供的描述并不充分。因此,在未来的工作中,我们必须同时考虑离子和聚合物的溶剂化作用,以获得对聚电解质凝胶中离子分配更现实的描述。