Suppr超能文献

一种木质素衍生的氮掺杂碳负载铁基纳米复合材料作为高效氧还原反应电催化剂。

A lignin-derived N-doped carbon-supported iron-based nanocomposite as high-efficiency oxygen reduction reaction electrocatalyst.

作者信息

Tian Yuan, Han Ying, Wang Xing, Ma Zihao, Sun Guangwei, Li Yao

机构信息

Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.

Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.

出版信息

Int J Biol Macromol. 2024 Feb;257(Pt 1):128317. doi: 10.1016/j.ijbiomac.2023.128317. Epub 2023 Nov 22.

Abstract

Fuel cells are a promising renewable energy technology that depend heavily on noble metal Pt-based catalysts, particularly for the oxygen reduction reaction (ORR). The discovery of new, efficient non-precious metal ORR catalysts is critical for the continued development of cost-effective, high-performance fuel cells. The synthesized carbon material showed excellent electrocatalytic activity for the ORR, with half-wave potential (E) and limiting current density (JL) of 0.88 V and 5.10 mA·cm in alkaline electrolyte, respectively. The material has a Tafel slope of (65 mV dec), which is close to commercial Pt/C catalysts (60 mV dec). Moreover, the prepared materials exhibited excellent performance when assembled as cathodes for zinc-air batteries. The power density reached 110.02 mW cm and the theoretical specific capacity was 801.21 mAh g, which was higher than that of the Pt/C catalyst (751.19 mAh g). In this study, with the assistance of Mg(CO)(OH)·4HO, we introduce an innovative approach to synthesize advanced carbon materials, achieving precise control over the material's structure and properties. This research bridges a crucial gap in material science, with potential applications in renewable energy technologies, particularly in enhancing catalysts for fuel cells.

摘要

燃料电池是一种很有前景的可再生能源技术,严重依赖于贵金属铂基催化剂,尤其是用于氧还原反应(ORR)。发现新型高效的非贵金属ORR催化剂对于持续开发具有成本效益的高性能燃料电池至关重要。合成的碳材料对ORR表现出优异的电催化活性,在碱性电解质中的半波电位(E)和极限电流密度(JL)分别为0.88 V和5.10 mA·cm。该材料的塔菲尔斜率为(65 mV dec),接近商业Pt/C催化剂(60 mV dec)。此外,制备的材料组装成锌空气电池的阴极时表现出优异的性能。功率密度达到110.02 mW cm,理论比容量为801.21 mAh g,高于Pt/C催化剂(751.19 mAh g)。在本研究中,借助Mg(CO)(OH)·4HO,我们引入了一种创新方法来合成先进的碳材料,实现了对材料结构和性能的精确控制。这项研究弥补了材料科学中的一个关键空白,在可再生能源技术中具有潜在应用,特别是在增强燃料电池催化剂方面。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验