Suppr超能文献

将激活函数引入分段回归模型以解决干预措施的滞后效应。

Introducing activation functions into segmented regression model to address lag effects of interventions.

机构信息

Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China.

Center for Migrant Health Policy, Sun Yat-sen University, Guangzhou, China.

出版信息

BMC Med Res Methodol. 2023 Nov 24;23(1):277. doi: 10.1186/s12874-023-02098-x.

Abstract

The interrupted time series (ITS) design is widely used to examine the effects of large-scale public health interventions and has the highest level of evidence validity. However, there is a notable gap regarding methods that account for lag effects of interventions.To address this, we introduced activation functions (ReLU and Sigmoid) to into the classic segmented regression (CSR) of the ITS design during the lag period. This led to the proposal of proposed an optimized segmented regression (OSR), namely, OSR-ReLU and OSR-Sig. To compare the performance of the models, we simulated data under multiple scenarios, including positive or negative impacts of interventions, linear or nonlinear lag patterns, different lag lengths, and different fluctuation degrees of the outcome time series. Based on the simulated data, we examined the bias, mean relative error (MRE), mean square error (MSE), mean width of the 95% confidence interval (CI), and coverage rate of the 95% CI for the long-term impact estimates of interventions among different models.OSR-ReLU and OSR-Sig yielded approximately unbiased estimates of the long-term impacts across all scenarios, whereas CSR did not. In terms of accuracy, OSR-ReLU and OSR-Sig outperformed CSR, exhibiting lower values in MRE and MSE. With increasing lag length, the optimized models provided robust estimates of long-term impacts. Regarding precision, OSR-ReLU and OSR-Sig surpassed CSR, demonstrating narrower mean widths of 95% CI and higher coverage rates.Our optimized models are powerful tools, as they can model the lag effects of interventions and provide more accurate and precise estimates of the long-term impact of interventions. The introduction of an activation function provides new ideas for improving of the CSR model.

摘要

中断时间序列(ITS)设计被广泛用于检验大型公共卫生干预措施的效果,具有最高水平的证据有效性。然而,对于能够解释干预措施滞后效应的方法,目前还存在明显的差距。为了解决这个问题,我们在 ITS 设计的经典分段回归(CSR)中引入了激活函数(ReLU 和 Sigmoid),这导致了提出的优化分段回归(OSR)的出现,即 OSR-ReLU 和 OSR-Sig。为了比较模型的性能,我们在多个场景下模拟了数据,包括干预措施的积极或消极影响、线性或非线性滞后模式、不同的滞后长度以及结果时间序列的不同波动程度。基于模拟数据,我们检查了不同模型对干预措施长期影响的长期影响估计的偏差、平均相对误差(MRE)、均方误差(MSE)、95%置信区间(CI)的平均宽度以及 95%CI 的覆盖率。OSR-ReLU 和 OSR-Sig 在所有场景下都产生了对长期影响的大致无偏估计,而 CSR 则没有。在准确性方面,OSR-ReLU 和 OSR-Sig 优于 CSR,表现出较低的 MRE 和 MSE 值。随着滞后长度的增加,优化模型提供了对长期影响的稳健估计。在精度方面,OSR-ReLU 和 OSR-Sig 优于 CSR,表现出较窄的 95%CI 的平均宽度和更高的覆盖率。我们的优化模型是强大的工具,因为它们可以模拟干预措施的滞后效应,并提供更准确和精确的干预措施长期影响的估计。激活函数的引入为改进 CSR 模型提供了新的思路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验