Suppr超能文献

针对个体层面数据进行的中断时间序列研究中缺失数据处理的当前实践:健康研究中的一项范围综述

Current Practices in Missing Data Handling for Interrupted Time Series Studies Performed on Individual-Level Data: A Scoping Review in Health Research.

作者信息

Bazo-Alvarez Juan Carlos, Morris Tim P, Carpenter James R, Petersen Irene

机构信息

Research Department of Primary Care and Population Health, University College London (UCL), London, UK.

School of Medicine, Universidad Cesar Vallejo, Trujillo, Peru.

出版信息

Clin Epidemiol. 2021 Jul 23;13:603-613. doi: 10.2147/CLEP.S314020. eCollection 2021.

Abstract

OBJECTIVE

Missing data can produce biased estimates in interrupted time series (ITS) analyses. We reviewed recent ITS investigations on health topics for determining 1) the data management strategies and statistical analysis performed, 2) how often missing data were considered and, if so, how they were evaluated, reported and handled.

STUDY DESIGN AND SETTING

This was a scoping review following standard recommendations from the PRISMA Extension for Scoping Reviews. We included a random sample of all ITS studies that assessed any intervention relevant to health care (eg, policies or programmes) with individual-level data, published in 2019, with abstracts indexed on MEDLINE.

RESULTS

From 732 studies identified, we finally reviewed 60. Reporting of missing data was rare. Data aggregation, statistical tools for modelling population-level data and complete case analyses were preferred, but these can lead to bias when data are missing at random. Seasonality and other time-dependent confounders were rarely accounted for and, when they were, missing data implications were typically ignored. Very few studies reflected on the consequences of missing data.

CONCLUSION

Handling and reporting of missing data in recent ITS studies performed for health research have many shortcomings compared with best practice.

摘要

目的

在中断时间序列(ITS)分析中,缺失数据可能会产生有偏差的估计。我们回顾了近期关于健康主题的ITS调查,以确定:1)所采用的数据管理策略及进行的统计分析;2)考虑缺失数据的频率,若考虑了,又是如何对其进行评估、报告和处理的。

研究设计与设置

这是一项遵循PRISMA扩展范围综述标准建议的范围综述。我们纳入了2019年发表的、使用个体层面数据评估任何与医疗保健相关干预措施(如政策或项目)的所有ITS研究的随机样本,其摘要在MEDLINE上被索引。

结果

从识别出的732项研究中,我们最终回顾了60项。对缺失数据的报告很少见。数据汇总、用于对总体层面数据进行建模的统计工具以及完整病例分析是首选方法,但当数据随机缺失时,这些方法可能会导致偏差。季节性和其他随时间变化的混杂因素很少被考虑,即便考虑了,通常也会忽略缺失数据的影响。很少有研究思考缺失数据的后果。

结论

与最佳实践相比,近期用于健康研究的ITS研究中,缺失数据的处理和报告存在许多不足。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa7d/8316757/5104638128b4/CLEP-13-603-g0001.jpg

相似文献

4
Handling Missing Values in Interrupted Time Series Analysis of Longitudinal Individual-Level Data.
Clin Epidemiol. 2020 Oct 8;12:1045-1057. doi: 10.2147/CLEP.S266428. eCollection 2020.
5
Are missing data adequately handled in cluster randomised trials? A systematic review and guidelines.
Clin Trials. 2014 Oct;11(5):590-600. doi: 10.1177/1740774514537136. Epub 2014 Jun 5.
6
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
7
Multiple imputation for handling missing outcome data when estimating the relative risk.
BMC Med Res Methodol. 2017 Sep 6;17(1):134. doi: 10.1186/s12874-017-0414-5.
9
How are missing data in covariates handled in observational time-to-event studies in oncology? A systematic review.
BMC Med Res Methodol. 2020 May 29;20(1):134. doi: 10.1186/s12874-020-01018-7.

引用本文的文献

本文引用的文献

2
Handling Missing Values in Interrupted Time Series Analysis of Longitudinal Individual-Level Data.
Clin Epidemiol. 2020 Oct 8;12:1045-1057. doi: 10.2147/CLEP.S266428. eCollection 2020.
3
Methods, Applications and Challenges in the Analysis of Interrupted Time Series Data: A Scoping Review.
J Multidiscip Healthc. 2020 May 13;13:411-423. doi: 10.2147/JMDH.S241085. eCollection 2020.
4
Design characteristics and statistical methods used in interrupted time series studies evaluating public health interventions: a review.
J Clin Epidemiol. 2020 Jun;122:1-11. doi: 10.1016/j.jclinepi.2020.02.006. Epub 2020 Feb 25.
5
Improving Timely Linkage to Care among Newly Diagnosed HIV-Infected Youth: Results of SMILE.
J Urban Health. 2019 Dec;96(6):845-855. doi: 10.1007/s11524-019-00391-z.
7
Methodology and reporting characteristics of studies using interrupted time series design in healthcare.
BMC Med Res Methodol. 2019 Jul 4;19(1):137. doi: 10.1186/s12874-019-0777-x.
8
Information-anchored sensitivity analysis: theory and application.
J R Stat Soc Ser A Stat Soc. 2019 Feb;182(2):623-645. doi: 10.1111/rssa.12423. Epub 2018 Nov 16.
9
Health indicator recording in UK primary care electronic health records: key implications for handling missing data.
Clin Epidemiol. 2019 Feb 11;11:157-167. doi: 10.2147/CLEP.S191437. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验