基于磁共振成像多感兴趣区融合模型评估中轴型脊柱关节炎的活动度。

Assessment of axial spondyloarthritis activity using a magnetic resonance imaging-based multi-region-of-interest fusion model.

机构信息

Department of Radiology, Peking University Third Hospital, Beijing, People's Republic of China.

出版信息

Arthritis Res Ther. 2023 Nov 24;25(1):227. doi: 10.1186/s13075-023-03193-6.

Abstract

BACKGROUND

Identifying axial spondyloarthritis (axSpA) activity early and accurately is essential for treating physicians to adjust treatment plans and guide clinical decisions promptly. The current literature is mostly focused on axSpA diagnosis, and there has been thus far, no study that reported the use of a radiomics approach for differentiating axSpA disease activity. In this study, the aim was to develop a radiomics model for differentiating active from non-active axSpA based on fat-suppressed (FS) T2-weighted (T2w) magnetic resonance imaging (MRI) of sacroiliac joints.

METHODS

This retrospective study included 109 patients diagnosed with non-active axSpA (n = 68) and active axSpA (n = 41); patients were divided into training and testing cohorts at a ratio of 8:2. Radiomics features were extracted from 3.0 T sacroiliac MRI using two different heterogeneous regions of interest (ROIs, Circle and Facet). Various methods were used to select relevant and robust features, and different classifiers were used to build Circle-based, Facet-based, and a fusion prediction model. Their performance was compared using various statistical parameters. p < 0.05 is considered statistically significant.

RESULTS

For both Circle- and Facet-based models, 2284 radiomics features were extracted. The combined fusion ROI model accurately differentiated between active and non-active axSpA, with high accuracy (0.90 vs.0.81), sensitivity (0.90 vs. 0.75), and specificity (0.90 vs. 0.85) in both training and testing cohorts.

CONCLUSION

The multi-ROI fusion radiomics model developed in this study differentiated between active and non-active axSpA using sacroiliac FS T2w-MRI. The results suggest MRI-based radiomics of the SIJ can distinguish axSpA activity, which can improve the therapeutic result and patient prognosis. To our knowledge, this is the only study in the literature that used a radiomics approach to determine axSpA activity.

摘要

背景

早期准确地识别中轴型脊柱关节炎(axSpA)的活动度对于治疗医生及时调整治疗方案和指导临床决策至关重要。目前的文献主要集中在 axSpA 的诊断上,迄今为止,尚无研究报告使用放射组学方法来区分 axSpA 疾病活动度。本研究旨在基于骶髂关节脂肪抑制(FS)T2 加权(T2w)磁共振成像(MRI),建立一种区分活动期和非活动期 axSpA 的放射组学模型。

方法

本回顾性研究纳入了 109 例诊断为非活动期 axSpA(n=68)和活动期 axSpA(n=41)的患者;患者按 8:2 的比例分为训练集和测试集。使用两种不同的异质感兴趣区(ROI,圆形和关节面)从 3.0T 骶髂 MRI 中提取放射组学特征。使用各种方法选择相关且稳健的特征,并使用不同的分类器构建基于圆形、基于关节面和融合预测模型。使用各种统计参数比较它们的性能。p<0.05 被认为具有统计学意义。

结果

对于基于圆形和关节面的模型,分别提取了 2284 个放射组学特征。联合融合 ROI 模型在训练集和测试集中均能准确地区分活动期和非活动期 axSpA,具有较高的准确性(0.90 与 0.81)、敏感性(0.90 与 0.75)和特异性(0.90 与 0.85)。

结论

本研究开发的多 ROI 融合放射组学模型使用骶髂 FS T2w-MRI 区分了活动期和非活动期 axSpA。结果表明,骶髂关节 MRI 的基于放射组学方法可以区分 axSpA 的活动度,从而改善治疗效果和患者预后。据我们所知,这是文献中唯一使用放射组学方法来确定 axSpA 活动度的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbf8/10668377/b32c03391d3f/13075_2023_3193_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索