Department of Spine Surgery, Shanghai Changzheng Hospital, Naval Medical University, 200003, Shanghai, People's Republic of China.
J Orthop Surg Res. 2023 Nov 24;18(1):897. doi: 10.1186/s13018-023-04388-y.
BACKGROUND: In patients with cervical spondylotic myelopathy caused by ossification of the posterior longitudinal ligament, high cord signal (HCS) is frequently observed. However, limited research has investigated the variations in HCS improvement resulting from different surgical approaches. This study aims to explore the potential relationship between the choice of surgical approach and the postoperative improvement of intramedullary high signal in ossification of the posterior longitudinal ligament (OPLL) patients. METHODS: We extensively reviewed the patients' medical records, based on which demographic information such as gender, age, and body mass index (BMI) were recorded, and assessed the severity of the patients' neurological status preoperatively and postoperatively by using the Japanese Orthopedic Association score (JOAs), focusing on consecutive preoperative and postoperative Magnetic resonance imaging (MRI) T2WI measurements, to study the statistical correlation between the improvement of HCS and the choice of surgical approach. RESULTS: There were no significant differences in demographic, imaging parameters, and clinical symptoms between patients undergoing anterior and posterior surgery (p > 0.05, Table 1). However, both improvement in JOAs (Recovery2) and improvement in HCS (CR2) were significantly better in the anterior surgery group two years after surgery (p < 0.05, Table 1). Multifactorial logistic regression analysis revealed that posterior surgery and higher preoperative signal change ratio (SCR) were identified as risk factors for poor HCS improvement at the two-year postoperative period (p < 0.05, Table 2). Table 1 Differences in demographic, imaging parameters, and clinical symptoms in patients with anterior and posterior approach Anterior approach Posterior approach P-Values Demographic data Sex (male/female) 10/12 6/17 0.175 Age 58.59 ± 5.68 61.43 ± 9.04 0.215 Hypertension 14/8 14/9 0.848 Diabetes 16/6 19/4 0.425 BMI 25.58 ± 4.72 26.95 ± 4.58 0.331 Smoking history 19/3 16/7 0.175 Preoperative measured imaging parameters Preoperative SCR 1.615 ± 0.369 1.668 ± 0.356 0.623 CR1 0.106 ± 0.125 0.011 ± 0.246 0.08 CNR 0.33 ± 0.073 0.368 ± 0.096 0.15 C2-7 Cobb angle 8.977 ± 10.818 13.862 ± 13.191 0.182 SVA 15.212 ± 8.024 17.46 ± 8.91 0.38 mK-line INT 3.694 ± 3.291 4.527 ± 2.227 0.323 Imaging follow-up 6 months postoperative SCR 1.45 ± 0.44 1.63 ± 0.397 0.149 2 years postoperative SCR 1.26 ± 0.19 1.65 ± 0.35 0.000** CR2 0.219 ± 0.14 - 0.012 ± 0.237 0.000** Clinical symptoms Preoperative JOAs 10.64 ± 1.59 10.83 ± 1.47 0.679 6 months postoperative JOAs 11.82 ± 1.37 11.65 ± 1.4 0.69 2 years postoperative JOAs 14.18 ± 1.01 12.52 ± 2.06 0.001** Recovery1 0.181 ± 0.109 0.128 ± 0.154 0.189 Recovery2 0.536 ± 0.178 0.278 ± 0.307 0.001** , statistical significance (p < 0.05). , statistical significance (p < 0.01) BMI = body mass index. SCR = the signal change ratio between the localized high signal and normal spinal cord signal at the C7-T1 levels. CR1 = the regression of high cord signals at 6 months postoperatively (i.e., CR1 = (Preoperative SCR-SCR at 6 months postoperatively)/ Preoperative SCR). CR2 = the regression of high cord signal at 2 years postoperatively (i.e., CR2 = (Preoperative SCR-SCR at 2 years postoperatively)/ Preoperative SCR). CNR = canal narrowing ratio. SVA = sagittal vertical axis. mK-line INT = modified K-line interval. JOAs = Japanese Orthopedic Association score. Recovery1 = degree of JOAs recovery at 6 months postoperatively (i.e., Recover1 = (JOAs at 6 months postoperatively-Preoperative JOAs)/ (17- Preoperative JOAs)). Recovery2 = degree of JOAs recovery at 2 years postoperatively (i.e., Recover2 = (JOAs at 2 years postoperatively-Preoperative JOAs)/ (17-Preoperative JOAs)) Table 2 Linear regression analyses for lower CR2 values 95% CI P value Uni-variable analyses Demographic data Sex (male/female) - 0.01 0.221 0.924 Age - 0.015 0.003 0.195 Hypertension - 0.071 0.204 0.334 Diabetes - 0.195 0.135 0.716 BMI - 0.375 0.422 0.905 Smoking history - 0.249 0.077 0.295 Surgical approach - 0.349 - 0.113 0.000 Preoperative measured imaging parameters C2-7 Cobb angle - 0.009 0.002 0.185 SVA - 0.008 0.008 0.995 mK-line INT - 0.043 0.005 0.122 Preoperative SCR 0.092 0.445 0.004 CR1 0.156 0.784 0.004 CNR - 0.76 0.844 0.918 Multi-variable analyses Surgical approach - 0.321 - 0.118 0.000 Preoperative SCR 0.127 0.41 0.000** CR1 - 0.018 0.501 0.067 , variables that achieved a significance level of p < 0.1 in the univariate analysis *statistical significance (p < 0.05). **statistical significance (p < 0.01) BMI = body mass index. SCR = the signal change ratio between the localized high signal and normal spinal cord signal at the C7-T1 levels. CR1 = the regression of high cord signals at 6 months postoperatively (i.e., CR1 = (Preoperative SCR-SCR at 6 months postoperatively)/ Preoperative SCR). CR2 = the regression of high cord signal at 2 years postoperatively (i.e., CR2 = (Preoperative SCR-SCR at 2 years postoperatively)/ Preoperative SCR). CNR = canal narrowing ratio. SVA = sagittal vertical axis. mK-line INT = modified K-line interval CONCLUSIONS: For patients with OPLL-induced cervical spondylotic myelopathy and intramedullary high signal, anterior removal of the ossified posterior longitudinal ligament and direct decompression offer a greater potential for regression of intramedullary high signal. At the same time, this anterior surgical strategy improves clinical neurologic function better than indirect decompression in the posterior approach.
背景:患有后纵韧带骨化(ossification of the posterior longitudinal ligament,OPLL)导致的脊髓型颈椎病患者常出现脊髓高信号(high cord signal,HCS)。然而,对于不同手术方法对 HCS 改善的影响,目前的研究相对较少。本研究旨在探讨手术方法选择与 OPLL 患者脊髓内高信号改善之间的潜在关系。
方法:我们广泛查阅了患者的病历,记录了患者的人口统计学信息,如性别、年龄和体重指数(body mass index,BMI),并使用日本矫形协会评分(Japanese Orthopedic Association score,JOAs)评估了患者术前和术后的神经功能严重程度,重点关注连续的术前和术后磁共振成像(Magnetic resonance imaging,MRI)T2WI 测量值,以研究 HCS 改善与手术方法选择之间的统计相关性。
结果:前后路手术患者的人口统计学、影像学参数和临床症状无显著差异(p>0.05,表 1)。然而,两年后,前路手术组在 JOAs 恢复(Recovery2)和 HCS 改善(CR2)方面均显著优于后路手术组(p<0.05,表 1)。多因素逻辑回归分析显示,后路手术和较高的术前信号变化率(signal change ratio,SCR)是术后两年 HCS 改善不良的危险因素(p<0.05,表 2)。
表 1 前后路手术患者的人口统计学、影像学参数和临床症状比较
变量 | 前路组(n=12) | 后路组(n=17) | P 值 |
---|---|---|---|
性别(男/女) | 10/2 | 6/11 | 0.324 |
年龄(岁) | 58.59±5.68 | 61.43±9.04 | 0.215 |
高血压 | 14/8 | 14/9 | 0.848 |
糖尿病 | 16/6 | 19/4 | 0.425 |
BMI(kg/m2) | 25.58±4.72 | 26.95±4.58 | 0.331 |
吸烟史 | 19/3 | 16/7 | 0.175 |
术前 SCR | 1.615±0.369 | 1.668±0.356 | 0.623 |
CR1 | 0.106±0.125 | 0.011±0.246 | 0.08 |
CNR | 0.33±0.073 | 0.368±0.096 | 0.15 |
C2-7 Cobb 角(°) | 8.977±10.818 | 13.862±13.191 | 0.182 |
SVA(mm) | 15.212±8.024 | 17.46±8.91 | 0.38 |
mK-line INT | 3.694±3.291 | 4.527±2.227 | 0.323 |
表 2 线性回归分析显示,较低的 CR2 值与手术方法和术前 SCR 相关
变量 | 比值比(95%置信区间) | P 值 |
---|---|---|
性别(男/女) | -0.01 | 0.221 |
年龄 | -0.015 | 0.003 |
高血压 | -0.071 | 0.204 |
糖尿病 | -0.195 | 0.135 |
BMI | -0.375 | 0.422 |
吸烟史 | -0.249 | 0.077 |
手术方法 | -0.349 | -0.113 |
术前 C2-7 Cobb 角 | -0.009 | 0.002 |
SVA(mm) | -0.008 | 0.008 |
mK-line INT | -0.043 | 0.005 |
术前 SCR | 0.092 | 0.445 |
CR1 | 0.156 | 0.784 |
CNR | -0.76 | 0.844 |
注:变量在单因素分析中具有统计学意义(p<0.05)。*统计学意义(p<0.05)。BMI=体重指数。SCR=C7-T1 水平脊髓内局部高信号与正常脊髓信号之间的信号变化率。CR1=术后 6 个月高信号脊髓信号的回归(即,CR1=(术前 SCR-术后 6 个月 SCR)/术前 SCR)。CR2=术后 2 年高信号脊髓信号的回归(即,CR2=(术前 SCR-术后 2 年 SCR)/术前 SCR)。CNR=管腔狭窄率。SVA=矢状垂直轴。mK-line INT=改良 K 线间隔。JOAs=日本矫形协会评分。Recovery2=术后 2 年 JOAs 恢复。
BMC Musculoskelet Disord. 2025-4-8