Vedeneeva Ekaterina, Gursky Vitaly, Samsonova Maria, Neganova Irina
Department of Physics and Mechanics & Mathematical Biology and Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia.
Laboratory of Molecular Medicine, Institute of Cytology, 194064 Saint Petersburg, Russia.
Biomedicines. 2023 Nov 9;11(11):3005. doi: 10.3390/biomedicines11113005.
Human pluripotent stem cells have the potential for unlimited proliferation and controlled differentiation into various somatic cells, making them a unique tool for regenerative and personalized medicine. Determining the best clone selection is a challenging problem in this field and requires new sensing instruments and methods able to automatically assess the state of a growing colony ('phenotype') and make decisions about its destiny. One possible solution for such label-free, non-invasive assessment is to make phase-contrast images and/or videos of growing stem cell colonies, process the morphological parameters ('morphological portrait', or signal), link this information to the colony phenotype, and initiate an automated protocol for the colony selection. As a step in implementing this strategy, we used machine learning methods to find an effective model for classifying the human pluripotent stem cell colonies of three lines according to their morphological phenotype ('good' or 'bad'), using morphological parameters from the previously published data as predictors. We found that the model using cellular morphological parameters as predictors and artificial neural networks as the classification method produced the best average accuracy of phenotype prediction (67%). When morphological parameters of colonies were used as predictors, logistic regression was the most effective classification method (75% average accuracy). Combining the morphological parameters of cells and colonies resulted in the most effective model, with a 99% average accuracy of phenotype prediction. Random forest was the most efficient classification method for the combined data. We applied feature selection methods and showed that different morphological parameters were important for phenotype recognition via either cellular or colonial parameters. Our results indicate a necessity for retaining both cellular and colonial morphological information for predicting the phenotype and provide an optimal choice for the machine learning method. The classification models reported in this study could be used as a basis for developing and/or improving automated solutions to control the quality of human pluripotent stem cells for medical purposes.
人类多能干细胞具有无限增殖的潜力,并能可控地分化为各种体细胞,这使其成为再生医学和个性化医疗的独特工具。确定最佳克隆选择是该领域一个具有挑战性的问题,需要新的传感仪器和方法,能够自动评估生长中的细胞集落状态(“表型”)并决定其命运。对于这种无标记、非侵入性评估的一种可能解决方案是拍摄生长中的干细胞集落的相差图像和/或视频,处理形态学参数(“形态画像”或信号),将此信息与集落表型联系起来,并启动用于集落选择的自动化方案。作为实施该策略的一步,我们使用机器学习方法,根据人类多能干细胞三个系的形态学表型(“好”或“坏”),利用先前发表数据中的形态学参数作为预测因子,找到一个有效的分类模型。我们发现,使用细胞形态学参数作为预测因子且以人工神经网络作为分类方法的模型产生了最佳的表型预测平均准确率(67%)。当使用集落的形态学参数作为预测因子时,逻辑回归是最有效的分类方法(平均准确率75%)。结合细胞和集落的形态学参数产生了最有效的模型,表型预测平均准确率为99%。随机森林是处理组合数据时最有效的分类方法。我们应用了特征选择方法,并表明不同的形态学参数对于通过细胞或集落参数识别表型很重要。我们的结果表明,保留细胞和集落形态学信息对于预测表型是必要的,并为机器学习方法提供了最佳选择。本研究中报告的分类模型可作为开发和/或改进用于医学目的控制人类多能干细胞质量的自动化解决方案的基础。