Suppr超能文献

END-PAC模型预测新发糖尿病患者患胰腺癌风险的准确性:一项系统评价和荟萃分析

Accuracy of the END-PAC Model in Predicting the Risk of Developing Pancreatic Cancer in Patients with New-Onset Diabetes: A Systematic Review and Meta-Analysis.

作者信息

Hajibandeh Shahab, Intrator Christina, Carrington-Windo Eliot, James Rhodri, Hughes Ioan, Hajibandeh Shahin, Satyadas Thomas

机构信息

Department of General Surgery, University Hospital of Wales, Cardiff & Vale NHS Trust, Cardiff CF14 4XW, UK.

Department of Hepatobiliary and Pancreatic Surgery, Manchester Royal Infirmary Hospital, Manchester M13 9WL, UK.

出版信息

Biomedicines. 2023 Nov 14;11(11):3040. doi: 10.3390/biomedicines11113040.

Abstract

OBJECTIVES

To investigate the performance of the END-PAC model in predicting pancreatic cancer risk in individuals with new-onset diabetes (NOD).

METHODS

The PRISMA statement standards were followed to conduct a systematic review. All studies investigating the performance of the END-PAC model in predicting pancreatic cancer risk in individuals with NOD were included. Two-by-two tables, coupled forest plots and summary receiver operating characteristic plots were constructed using the number of true positives, false negatives, true negatives and false positives. Diagnostic random effects models were used to estimate summary sensitivity and specificity points.

RESULTS

A total of 26,752 individuals from four studies were included. The median follow-up was 3 years and the pooled risk of pancreatic cancer was 0.8% (95% CI 0.6-1.0%). END-PAC score ≥ 3, which classifies the patients as high risk, was associated with better predictive performance (sensitivity: 55.8% (43.9-67%); specificity: 82.0% (76.4-86.5%)) in comparison with END-PAC score 1-2 (sensitivity: 22.2% (16.6-29.2%); specificity: 69.9% (67.3-72.4%)) and END-PAC score < 1 (sensitivity: 18.0% (12.8-24.6%); specificity: 50.9% (48.6-53.2%)) which classify the patients as intermediate and low risk, respectively. The evidence quality was judged to be moderate to high.

CONCLUSIONS

END-PAC is a promising model for predicting pancreatic cancer risk in individuals with NOD. The score ≥3 should be considered as optimum cut-off value. More studies are needed to assess whether it could improve early pancreatic cancer detection rate, pancreatic cancer re-section rate, and pancreatic cancer treatment outcomes.

摘要

目的

研究END-PAC模型在预测新发糖尿病(NOD)个体患胰腺癌风险方面的性能。

方法

遵循PRISMA声明标准进行系统评价。纳入所有研究END-PAC模型在预测NOD个体患胰腺癌风险方面性能的研究。使用真阳性、假阴性、真阴性和假阳性的数量构建二乘二列联表、森林图和汇总受试者工作特征图。采用诊断随机效应模型估计汇总敏感性和特异性点。

结果

共纳入四项研究中的26752名个体。中位随访时间为3年,胰腺癌的合并风险为0.8%(95%CI 0.6-1.0%)。将患者分类为高风险的END-PAC评分≥3与更好的预测性能相关(敏感性:55.8%(43.9-67%);特异性:82.0%(76.4-86.5%)),相比之下,将患者分别分类为中风险和低风险的END-PAC评分1-2(敏感性:22.2%(16.6-29.2%);特异性:69.9%(67.3-72.4%))和END-PAC评分<1(敏感性:18.0%(12.8-24.6%);特异性:50.9%(48.6-53.2%))。证据质量被判定为中等到高。

结论

END-PAC是预测NOD个体患胰腺癌风险的一个有前景的模型。评分≥3应被视为最佳临界值。需要更多研究来评估它是否能提高早期胰腺癌检出率、胰腺癌再切除率和胰腺癌治疗效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b481/10669673/ce10ce7637f6/biomedicines-11-03040-g001.jpg

相似文献

2
Model to Determine Risk of Pancreatic Cancer in Patients With New-Onset Diabetes.
Gastroenterology. 2018 Sep;155(3):730-739.e3. doi: 10.1053/j.gastro.2018.05.023. Epub 2018 Jun 11.
4
Validation of the Enriching New-Onset Diabetes for Pancreatic Cancer Model in a Diverse and Integrated Healthcare Setting.
Dig Dis Sci. 2021 Jan;66(1):78-87. doi: 10.1007/s10620-020-06139-z. Epub 2020 Feb 28.
5
Potential Cost-Effectiveness of Risk-Based Pancreatic Cancer Screening in Patients With New-Onset Diabetes.
J Natl Compr Canc Netw. 2021 Jun 21;20(5):451-459. doi: 10.6004/jnccn.2020.7798.
6
Quantitative assessment of the diagnostic role of human telomerase activity from pancreatic juice in pancreatic cancer.
Tumour Biol. 2014 Aug;35(8):7897-904. doi: 10.1007/s13277-014-2053-3. Epub 2014 May 15.
7
Duplex ultrasound for diagnosing symptomatic carotid stenosis in the extracranial segments.
Cochrane Database Syst Rev. 2022 Jul 11;7(7):CD013172. doi: 10.1002/14651858.CD013172.pub2.
9
Polymerase chain reaction blood tests for the diagnosis of invasive aspergillosis in immunocompromised people.
Cochrane Database Syst Rev. 2019 Sep 3;9(9):CD009551. doi: 10.1002/14651858.CD009551.pub4.
10
MicroRNAs as novel biomarkers for pancreatic cancer diagnosis: a meta-analysis based on 18 articles.
Tumour Biol. 2014 Sep;35(9):8837-48. doi: 10.1007/s13277-014-2133-4. Epub 2014 Jun 2.

引用本文的文献

1
Current paradigm and futuristic vision on new-onset diabetes and pancreatic cancer research.
Front Pharmacol. 2025 May 23;16:1543112. doi: 10.3389/fphar.2025.1543112. eCollection 2025.
2
Can AI Be Useful in the Early Detection of Pancreatic Cancer in Patients with New-Onset Diabetes?
Biomedicines. 2025 Mar 31;13(4):836. doi: 10.3390/biomedicines13040836.

本文引用的文献

3
Treatment optimization of locally advanced and metastatic pancreatic cancer (Review).
Int J Oncol. 2021 Dec;59(6). doi: 10.3892/ijo.2021.5290. Epub 2021 Dec 3.
4
Diabetes and pancreatic cancer: Exploring the two-way traffic.
World J Gastroenterol. 2021 Aug 14;27(30):4939-4962. doi: 10.3748/wjg.v27.i30.4939.
5
Potential Cost-Effectiveness of Risk-Based Pancreatic Cancer Screening in Patients With New-Onset Diabetes.
J Natl Compr Canc Netw. 2021 Jun 21;20(5):451-459. doi: 10.6004/jnccn.2020.7798.
6
Validation of the ENDPAC model: Identifying new-onset diabetics at risk of pancreatic cancer.
Pancreatology. 2021 Apr;21(3):550-555. doi: 10.1016/j.pan.2021.02.001. Epub 2021 Feb 8.
8
Validation of the Enriching New-Onset Diabetes for Pancreatic Cancer Model in a Diverse and Integrated Healthcare Setting.
Dig Dis Sci. 2021 Jan;66(1):78-87. doi: 10.1007/s10620-020-06139-z. Epub 2020 Feb 28.
9
Screening for Pancreatic Cancer.
JAMA. 2019 Aug 6;322(5):478. doi: 10.1001/jama.2019.10776.
10
Model to Determine Risk of Pancreatic Cancer in Patients With New-Onset Diabetes.
Gastroenterology. 2018 Sep;155(3):730-739.e3. doi: 10.1053/j.gastro.2018.05.023. Epub 2018 Jun 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验