Suppr超能文献

验证用于胰腺癌的新发糖尿病富集模型:基于真实世界数据的回顾性队列研究。

Validation of the Enriching New-Onset Diabetes for Pancreatic Cancer Model: A Retrospective Cohort Study Using Real-World Data.

机构信息

KSM Research and Innovation Center, Maccabi Healthcare Services, Tel-Aviv, Israel.

出版信息

Pancreas. 2022 Feb 1;51(2):196-199. doi: 10.1097/MPA.0000000000002000.

Abstract

OBJECTIVES

The Enriching New-onset Diabetes for Pancreatic Cancer (END-PAC) model identified patients at high-risk for pancreatic ductal adenocarcinoma (PDAC) more than 6 months before diagnosis. The current study aimed to validate the END-PAC model using a large, state-mandated health care provider database.

METHODS

A retrospective cohort study of patients older than 50 years that had a diagnosis of new-onset diabetes (NOD) between 2006 and 2015. A risk score was assigned according to the END-PAC model. Patients who developed PDAC over the 3-year period after NOD diagnosis were identified using the Israeli National Cancer Registry.

RESULTS

Twenty-three percent (1245/5408) of NOD patients were classified as high-risk, of them 32 (2.6%) developed PDAC. Median follow-up time from NOD detection to PDAC diagnosis was 609 days (interquartile range, 367-997). The hazard ratio for PDAC diagnosis among individuals at the high-risk group compared with the low-risk group was 5.70 (95% confidence interval, 2.93-11.06). Using the high-risk group as the screening threshold, the sensitivity, specificity, positive predictive value and negative predictive value of the model were 54.2%, 76.98%, 2.57%, and 99.4%, respectively. Area under the curve of the model was 0.69.

CONCLUSIONS

Our findings support the robustness, generalizability and clinical applicability of the END-PAC model.

摘要

目的

Enriching New-onset Diabetes for Pancreatic Cancer(END-PAC)模型在诊断前超过 6 个月识别出患有胰腺导管腺癌(PDAC)风险较高的患者。本研究旨在使用大型州授权医疗保健提供者数据库验证 END-PAC 模型。

方法

回顾性队列研究,纳入 2006 年至 2015 年间诊断为新发糖尿病(NOD)的年龄大于 50 岁的患者。根据 END-PAC 模型分配风险评分。使用以色列国家癌症登记处确定在 NOD 诊断后 3 年内发生 PDAC 的患者。

结果

23%(1245/5408)的 NOD 患者被归类为高危人群,其中 32 例(2.6%)发生 PDAC。从 NOD 检测到 PDAC 诊断的中位随访时间为 609 天(四分位距,367-997)。与低危组相比,高危组个体发生 PDAC 诊断的风险比为 5.70(95%置信区间,2.93-11.06)。将高危组作为筛查阈值,该模型的敏感性、特异性、阳性预测值和阴性预测值分别为 54.2%、76.98%、2.57%和 99.4%,曲线下面积为 0.69。

结论

我们的研究结果支持 END-PAC 模型的稳健性、普遍性和临床适用性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验