Suppr超能文献

简化人类软腭的时变流固耦合模拟

Time-Dependent Fluid-Structure Interaction Simulations of a Simplified Human Soft Palate.

作者信息

Li Peng, Laudato Marco, Mihaescu Mihai

机构信息

Department of Engineering Mechanics, FLOW, KTH Royal Institute of Technology, 10044 Stockholm, Sweden.

出版信息

Bioengineering (Basel). 2023 Nov 14;10(11):1313. doi: 10.3390/bioengineering10111313.

Abstract

Obstructive Sleep Apnea Syndrome (OSAS) is a common sleep-related disorder. It is characterized by recurrent partial or total collapse of pharyngeal upper airway accompanied by induced vibrations of the soft tissues (e.g., soft palate). The knowledge of the tissue behavior subject to a particular airflow is relevant for realistic clinic applications. However, in-vivo measurements are usually impractical. The goal of the present study is to develop a 3D fluid-structure interaction model for the human uvulopalatal system relevant to OSA based on simplified geometries under physiological conditions. Numerical simulations are performed to assess the influence of the different breathing conditions on the vibrational dynamics of the flexible structure. Meanwhile, the fluid patterns are investigated for the coupled fluid-structure system as well. Increasing the respiratory flow rate is shown to induce larger structural deformation. Vortex shedding induced resonance is not observed due to the large discrepancy between the flow oscillatory frequency and the natural frequency of the structure. The large deformation for symmetric breathing case under intensive respiration is mainly because of the positive feedback from the pressure differences on the top and the bottom surfaces of the structure.

摘要

阻塞性睡眠呼吸暂停综合征(OSAS)是一种常见的与睡眠相关的疾病。其特征是咽部上气道反复出现部分或完全塌陷,并伴有软组织(如软腭)的振动。了解特定气流作用下的组织行为对于实际临床应用具有重要意义。然而,体内测量通常不切实际。本研究的目的是基于生理条件下的简化几何形状,为与OSA相关的人类悬雍垂腭系统开发一个三维流固耦合模型。进行数值模拟以评估不同呼吸条件对柔性结构振动动力学的影响。同时,也对耦合流固系统的流体模式进行了研究。结果表明,增加呼吸流速会导致更大的结构变形。由于流动振荡频率与结构固有频率之间存在较大差异,未观察到涡激共振。在强烈呼吸下对称呼吸情况下的大变形主要是由于结构上下表面压力差的正反馈作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f11b/10669192/cec85dd8e29f/bioengineering-10-01313-g001.jpg

相似文献

1
Time-Dependent Fluid-Structure Interaction Simulations of a Simplified Human Soft Palate.
Bioengineering (Basel). 2023 Nov 14;10(11):1313. doi: 10.3390/bioengineering10111313.
2
Computational fluid-structure interaction simulation of airflow in the human upper airway.
J Biomech. 2015 Oct 15;48(13):3685-91. doi: 10.1016/j.jbiomech.2015.08.017. Epub 2015 Aug 22.
4
Biomechanics of the soft-palate in sleep apnea patients with polycystic ovarian syndrome.
J Biomech. 2018 Jul 25;76:8-15. doi: 10.1016/j.jbiomech.2018.05.013. Epub 2018 May 17.
5
Control mechanism for the upper airway collapse in patients with obstructive sleep apnea syndrome: a finite element study.
Sci China Life Sci. 2013 Apr;56(4):366-72. doi: 10.1007/s11427-013-4448-6. Epub 2013 Mar 12.
6
A review of fluid-structure interaction simulation for patients with sleep related breathing disorders with obstructive sleep.
Comput Methods Programs Biomed. 2019 Oct;180:105036. doi: 10.1016/j.cmpb.2019.105036. Epub 2019 Aug 12.
7
Fluid-structure interaction modeling of upper airways before and after nasal surgery for obstructive sleep apnea.
Int J Numer Method Biomed Eng. 2012 May;28(5):528-46. doi: 10.1002/cnm.1486. Epub 2012 Jan 20.
8
Fluid-structure interaction modelling of the upper airway with and without obstructive sleep apnea: a review.
Med Biol Eng Comput. 2022 Jul;60(7):1827-1849. doi: 10.1007/s11517-022-02592-2. Epub 2022 May 18.
9
Passive movement of human soft palate during respiration: A simulation of 3D fluid/structure interaction.
J Biomech. 2012 Jul 26;45(11):1992-2000. doi: 10.1016/j.jbiomech.2012.04.027. Epub 2012 May 31.

本文引用的文献

1
Buckling critical pressures in collapsible tubes relevant for biomedical flows.
Sci Rep. 2023 Jun 8;13(1):9298. doi: 10.1038/s41598-023-36513-6.
3
Multinight Prevalence, Variability, and Diagnostic Misclassification of Obstructive Sleep Apnea.
Am J Respir Crit Care Med. 2022 Mar 1;205(5):563-569. doi: 10.1164/rccm.202107-1761OC.
4
Predicting critical closing pressure in children with obstructive sleep apnea using fluid-structure interaction.
J Appl Physiol (1985). 2021 Nov 1;131(5):1629-1639. doi: 10.1152/japplphysiol.00694.2020. Epub 2021 Sep 16.
5
An experimental investigation to model wheezing in lungs.
R Soc Open Sci. 2021 Feb 24;8(2):201951. doi: 10.1098/rsos.201951.
6
Analysis of the aerodynamic sound of speech through static vocal tract models of various glottal shapes.
J Biomech. 2020 Jan 23;99:109484. doi: 10.1016/j.jbiomech.2019.109484. Epub 2019 Nov 5.
7
Correlation of Bedside Airway Screening Tests With Airway Obstruction During Drug-Induced Sleep Endoscopy.
Asian J Anesthesiol. 2019 Dec 1;57(4):117-124. doi: 10.6859/aja.201912_57(4).0002. Epub 2019 Nov 6.
9
Neuromuscular function of the soft palate and uvula in snoring and obstructive sleep apnea: A systematic review.
Am J Otolaryngol. 2018 May-Jun;39(3):327-337. doi: 10.1016/j.amjoto.2018.03.006. Epub 2018 Mar 5.
10
Obstructive sleep apnea: current perspectives.
Nat Sci Sleep. 2018 Jan 23;10:21-34. doi: 10.2147/NSS.S124657. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验