Suppr超能文献

通过在 中联合应用未折叠蛋白反应和早期蛋白分泌途径工程来减轻酶过量生产引起的内质网应激。

Up Front Unfolded Protein Response Combined with Early Protein Secretion Pathway Engineering in to Attenuate ER Stress Caused by Enzyme Overproduction.

机构信息

National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China.

Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.

出版信息

Int J Mol Sci. 2023 Nov 17;24(22):16426. doi: 10.3390/ijms242216426.

Abstract

Engineering the yeast as an efficient host to produce recombinant proteins remains a longstanding goal for applied biocatalysis. During the protein overproduction, the accumulation of unfolded and misfolded proteins causes ER stress and cell dysfunction in . In this study, we evaluated the effects of several potential ER chaperones and translocation components on relieving ER stress by debottlenecking the protein synthetic machinery during the production of the endogenous lipase 2 and the β-galactosidase. Our results showed that improving the activities of the non-dominant translocation pathway (SRP-independent) boosted the production of the two proteins. While the impact of ER chaperones is protein dependent, the nucleotide exchange factor Sls1p for protein folding catalyst Kar2p is recognized as a common contributor enhancing the secretion of the two enzymes. With the identified protein translocation components and ER chaperones, we then exemplified how these components can act synergistically with Hac1p to enhance recombinant protein production and relieve the ER stress on cell growth. Specifically, the yeast overexpressing Sls1p and cytosolic heat shock protein Ssa8p and Ssb1p yielded a two-fold increase in Lip2p secretion compared with the control, while co-overexpressing Ssa6p, Ssb1p, Sls1p and Hac1p resulted in a 90% increase in extracellular β-galp activity. More importantly, the cells sustained a maximum specific growth rate (μ) of 0.38 h and a biomass yield of 0.95 g-DCW/g-glucose, only slightly lower than that was obtained by the wild type strain. This work demonstrated engineering ER chaperones and translocation as useful strategies to facilitate the development of as an efficient protein-manufacturing platform.

摘要

将酵母工程化为生产重组蛋白的高效宿主仍然是应用生物催化的长期目标。在蛋白质过表达过程中,未折叠和错误折叠蛋白质的积累会导致内质网应激和细胞功能障碍。在这项研究中,我们评估了几种潜在的内质网伴侣和易位成分通过在生产内源性脂肪酶 2 和 β-半乳糖苷酶时疏通蛋白质合成机制来缓解内质网应激的效果。我们的结果表明,改善非优势易位途径(不依赖 SRP)的活性可以提高两种蛋白质的产量。虽然内质网伴侣的影响取决于蛋白质,但作为蛋白质折叠催化剂 Kar2p 的核苷酸交换因子 Sls1p 被认为是增强两种酶分泌的共同贡献者。有了鉴定出的蛋白质易位成分和内质网伴侣,我们然后举例说明了这些成分如何与 Hac1p 协同作用,以提高重组蛋白的产量并缓解细胞生长的内质网应激。具体来说,与对照相比,过表达 Sls1p 和细胞质热休克蛋白 Ssa8p 和 Ssb1p 的酵母使 Lip2p 的分泌增加了两倍,而共过表达 Ssa6p、Ssb1p、Sls1p 和 Hac1p 则使细胞外β-galp 活性增加了 90%。更重要的是,细胞维持的最大比生长速率(μ)为 0.38 h,生物质产率为 0.95 g-DCW/g-葡萄糖,仅略低于野生型菌株获得的值。这项工作表明,工程内质网伴侣和易位是促进作为高效蛋白质制造平台的发展的有用策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2b8/10670989/4ab1e307e040/ijms-24-16426-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验