A Linear Predictor Based on FTIR Spectral Biomarkers Improves Disease Diagnosis Classification: An Application to Multiple Sclerosis.

作者信息

Condino Francesca, Crocco Maria Caterina, Pirritano Domenico, Petrone Alfredo, Del Giudice Francesco, Guzzi Rita

机构信息

Department of Economics, Statistics and Finance "Giovanni Anania", University of Calabria, 87036 Rende, Italy.

STAR Research Infrastructure, University of Calabria, 87036 Rende, Italy.

出版信息

J Pers Med. 2023 Nov 11;13(11):1596. doi: 10.3390/jpm13111596.

Abstract

Multiple sclerosis (MS) is a neurodegenerative disease of the central nervous system that can lead to long-term disability. The diagnosis of MS is not simple and requires many instrumental and clinical tests. Sampling easily collected biofluids using spectroscopic approaches is becoming of increasing interest in the medical field to integrate and improve diagnostic procedures. Here we present a statistical approach where we combine a number of spectral biomarkers derived from the ATR-FTIR spectra of blood plasma samples of healthy control subjects and MS patients, to obtain a linear predictor useful for discriminating between the two groups of individuals. This predictor provides a simple tool in which the contribution of different molecular components is summarized and, as a result, the sensitivity (80%) and specificity (93%) of the identification are significantly improved compared to those obtained with typical classification algorithms. The strategy proposed can be very helpful when applied to the diagnosis of diseases whose presence is reflected in a minimal way in the analyzed biofluids (blood and its derivatives), as it is for MS as well as for other neurological disorders.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1d1/10672539/bc99663ce550/jpm-13-01596-g001.jpg

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索