Suppr超能文献

自催化反应网络的层次组织及其与生命起源的关系。

The hierarchical organization of autocatalytic reaction networks and its relevance to the origin of life.

机构信息

Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.

Department of Industrial and Systems Engineering, University of Wisconsin-Madison, Madison Wisconsin, United States of America.

出版信息

PLoS Comput Biol. 2022 Sep 9;18(9):e1010498. doi: 10.1371/journal.pcbi.1010498. eCollection 2022 Sep.

Abstract

Prior work on abiogenesis, the emergence of life from non-life, suggests that it requires chemical reaction networks that contain self-amplifying motifs, namely, autocatalytic cores. However, little is known about how the presence of multiple autocatalytic cores might allow for the gradual accretion of complexity on the path to life. To explore this problem, we develop the concept of a seed-dependent autocatalytic system (SDAS), which is a subnetwork that can autocatalytically self-maintain given a flux of food, but cannot be initiated by food alone. Rather, initiation of SDASs requires the transient introduction of chemical "seeds." We show that, depending on the topological relationship of SDASs in a chemical reaction network, a food-driven system can accrete complexity in a historically contingent manner, governed by rare seeding events. We develop new algorithms for detecting and analyzing SDASs in chemical reaction databases and describe parallels between multi-SDAS networks and biological ecosystems. Applying our algorithms to both an abiotic reaction network and a biochemical one, each driven by a set of simple food chemicals, we detect SDASs that are organized as trophic tiers, of which the higher tier can be seeded by relatively simple chemicals if the lower tier is already activated. This indicates that sequential activation of trophically organized SDASs by seed chemicals that are not much more complex than what already exist could be a mechanism of gradual complexification from relatively simple abiotic reactions to more complex life-like systems. Interestingly, in both reaction networks, higher-tier SDASs include chemicals that might alter emergent features of chemical systems and could serve as early targets of selection. Our analysis provides computational tools for analyzing very large chemical/biochemical reaction networks and suggests new approaches to studying abiogenesis in the lab.

摘要

先前关于生命起源的研究表明,从非生命物质中产生生命需要包含自我放大模体的化学反应网络,即自催化核心。然而,对于多个自催化核心如何在通向生命的道路上逐渐积累复杂性,我们知之甚少。为了探索这个问题,我们提出了依赖于种子的自催化系统(SDAS)的概念,这是一种可以在有食物通量的情况下自我维持的亚网络,但不能仅由食物启动。相反,SDAS 的启动需要化学“种子”的短暂引入。我们表明,取决于化学反应网络中 SDAS 的拓扑关系,食物驱动的系统可以以历史上偶然的方式积累复杂性,受稀有播种事件的控制。我们开发了用于在化学反应数据库中检测和分析 SDAS 的新算法,并描述了多 SDAS 网络与生物生态系统之间的相似之处。我们将这些算法应用于非生物和生化反应网络,每个网络都由一组简单的食物化学品驱动,我们检测到 SDAS 被组织成营养层次,如果较低层次已经被激活,较高层次可以通过相对简单的化学物质进行播种。这表明,通过比已经存在的化学物质稍微复杂的种子化学物质,顺序激活营养组织的 SDAS 可能是从相对简单的非生物反应到更复杂的类生命系统逐渐复杂化的一种机制。有趣的是,在这两个反应网络中,较高层次的 SDAS 包括可能改变化学系统出现特征的化学物质,并且可以作为早期选择的目标。我们的分析提供了用于分析非常大的化学/生化反应网络的计算工具,并为实验室中研究生命起源提供了新的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bb7/9491600/d6925272a163/pcbi.1010498.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验