文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

新型金纳米棒@硫醇化果胶通过光热消融对HeLa细胞的杀伤作用

Novel Gold Nanorods@Thiolated Pectin on the Killing of HeLa Cells by Photothermal Ablation.

作者信息

Beltran Osvaldo, Luna Mariangel, Gastelum Marisol, Costa-Santos Alba, Cambón Adriana, Taboada Pablo, López-Mata Marco A, Topete Antonio, Juarez Josue

机构信息

Posgrado en Nanotecnología, Departamento de Física, Universidad de Sonora, Unidad Centro, Hermosillo 83000, Sonora, Mexico.

Grupo de Física de Coloides y Polímeros, Área de Materia Condensada, Departamento de Física de Partículas, Facultad de Física, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain.

出版信息

Pharmaceutics. 2023 Nov 2;15(11):2571. doi: 10.3390/pharmaceutics15112571.


DOI:10.3390/pharmaceutics15112571
PMID:38004550
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10675277/
Abstract

Gold nanorods (AuNRs) have attracted attention in the field of biomedicine, particularly for their potential as photothermal agents capable of killing tumor cells by photothermic ablation. In this study, the synthesis of novel AuNRs stabilized with thiolated pectin (AuNR@SH-PEC) is reported. To achieve this, thiolated pectin (SH-PEC) was obtained by chemically binding cysteamine motifs to the pectin backbone. The success of the reaction was ascertained using FTIR-ATR. Subsequently, the SH-PEC was used to coat and stabilize the surface of AuNRs (AuNR@SH-PEC). In this context, different concentrations of SH-PEC (0.25, 0.50, 1.0, 2.0, 4.0, and 8.0 mg/mL) were added to 0.50 mL of AuNRs suspended in CTAB, aiming to determine the experimental conditions under which AuNR@SH-PEC maintains stability. The results show that SH-PEC effectively replaced the CTAB adsorbed on the surface of AuNRs, enhancing the stability of AuNRs without affecting their optical properties. Additionally, scanning electron and atomic force microscopy confirmed that SH-PEC is adsorbed into the surface of the AuNRs. Importantly, the dimension size (60 × 15 nm) and the aspect ratio (4:1) remained consistent with those of AuNRs stabilized with CTAB. Then, the photothermal properties of gold nanorods were evaluated by irradiating the aqueous suspension of AuNR@SH-PEC with a CW laser (808 nm, 1 W). These results showed that photothermal conversion efficiency is similar to the photothermal conversion observed for AuNR-CTAB. Lastly, the cell viability assays confirmed that the SH-PEC coating enhanced the biocompatibility of AuNR@SH-PEC. Most important, the viability cell assays subjected to laser irradiation in the presence of AuNR@SH-PEC showed a decrease in the cell viability relative to the non-irradiated cells. These results suggest that AuNRs stabilized with thiolated pectin can potentially be exploited in the implementation of photothermal therapy.

摘要

金纳米棒(AuNRs)在生物医学领域引起了关注,特别是因其具有作为光热剂的潜力,能够通过光热消融杀死肿瘤细胞。在本研究中,报道了用硫醇化果胶稳定的新型金纳米棒(AuNR@SH-PEC)的合成。为此,通过将半胱胺基序化学结合到果胶主链上获得了硫醇化果胶(SH-PEC)。使用傅里叶变换红外衰减全反射光谱(FTIR-ATR)确定反应是否成功。随后,用SH-PEC包覆并稳定金纳米棒(AuNR@SH-PEC)的表面。在此情况下,将不同浓度的SH-PEC(0.25、0.50、1.0、2.0、4.0和8.0 mg/mL)添加到0.50 mL悬浮于十六烷基三甲基溴化铵(CTAB)中的金纳米棒中,旨在确定AuNR@SH-PEC保持稳定性的实验条件。结果表明,SH-PEC有效地取代了吸附在金纳米棒表面的CTAB,增强了金纳米棒的稳定性,同时不影响其光学性质。此外,扫描电子显微镜和原子力显微镜证实SH-PEC吸附到了金纳米棒的表面。重要的是,其尺寸大小(60×15 nm)和纵横比(4:1)与用CTAB稳定的金纳米棒一致。然后,通过用连续波激光器(808 nm,1 W)照射AuNR@SH-PEC的水悬浮液来评估金纳米棒的光热性能。这些结果表明,光热转换效率与观察到的AuNR-CTAB的光热转换相似。最后,细胞活力测定证实SH-PEC涂层增强了AuNR@SH-PEC的生物相容性。最重要的是,在存在AuNR@SH-PEC的情况下进行激光照射的细胞活力测定表明,相对于未照射的细胞,细胞活力有所下降。这些结果表明,用硫醇化果胶稳定的金纳米棒有可能用于光热治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffa/10675277/841aa07c8553/pharmaceutics-15-02571-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffa/10675277/a4d533b5164f/pharmaceutics-15-02571-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffa/10675277/98e1fbf3214d/pharmaceutics-15-02571-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffa/10675277/2b539e1cff25/pharmaceutics-15-02571-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffa/10675277/d55058ead9d7/pharmaceutics-15-02571-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffa/10675277/7934dbca621a/pharmaceutics-15-02571-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffa/10675277/2f4749e7f147/pharmaceutics-15-02571-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffa/10675277/158fa0bfb850/pharmaceutics-15-02571-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffa/10675277/8bb648daf90c/pharmaceutics-15-02571-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffa/10675277/8b2d06965111/pharmaceutics-15-02571-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffa/10675277/7eb2dfda3c24/pharmaceutics-15-02571-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffa/10675277/841aa07c8553/pharmaceutics-15-02571-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffa/10675277/a4d533b5164f/pharmaceutics-15-02571-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffa/10675277/98e1fbf3214d/pharmaceutics-15-02571-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffa/10675277/2b539e1cff25/pharmaceutics-15-02571-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffa/10675277/d55058ead9d7/pharmaceutics-15-02571-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffa/10675277/7934dbca621a/pharmaceutics-15-02571-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffa/10675277/2f4749e7f147/pharmaceutics-15-02571-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffa/10675277/158fa0bfb850/pharmaceutics-15-02571-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffa/10675277/8bb648daf90c/pharmaceutics-15-02571-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffa/10675277/8b2d06965111/pharmaceutics-15-02571-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffa/10675277/7eb2dfda3c24/pharmaceutics-15-02571-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffa/10675277/841aa07c8553/pharmaceutics-15-02571-g011.jpg

相似文献

[1]
Novel Gold Nanorods@Thiolated Pectin on the Killing of HeLa Cells by Photothermal Ablation.

Pharmaceutics. 2023-11-2

[2]
Preparation of envelope-type lipid nanoparticles containing gold nanorods for photothermal cancer therapy.

Colloids Surf B Biointerfaces. 2017-10-9

[3]
Design of Biopolymer-Coated Gold Nanorods as Biorelevant Photothermal Agents.

Macromol Rapid Commun. 2024-12

[4]
Photothermal conversion efficiency and cytotoxic effect of gold nanorods stabilized with chitosan, alginate and poly(vinyl alcohol).

Mater Sci Eng C Mater Biol Appl. 2017-8-1

[5]
Gold nanoclusters modified mesoporous silica coated gold nanorods: Enhanced photothermal properties and fluorescence imaging.

J Photochem Photobiol B. 2021-2

[6]
Carbon-Coated Gold Nanorods: A Facile Route to Biocompatible Materials for Photothermal Applications.

ACS Appl Mater Interfaces. 2015-11-13

[7]
Gd³⁺ Tethered Gold Nanorods for Combined Magnetic Resonance Imaging and Photo-Thermal Therapy.

J Biomed Nanotechnol. 2017-4

[8]
Simple and Rapid Functionalization of Gold Nanorods with Oligonucleotides Using an mPEG-SH/Tween 20-Assisted Approach.

Langmuir. 2015-7-21

[9]
Fabrication of silica-coated gold nanorods and investigation of their property of photothermal conversion.

Biochem Biophys Res Commun. 2017-3-4

[10]
Small gold nanorods-loaded hybrid albumin nanoparticles with high photothermal efficacy for tumor ablation.

Colloids Surf B Biointerfaces. 2019-4-1

本文引用的文献

[1]
In situ formation of alginic acid-gold nanohybrids for application in cancer photothermal therapy.

Biotechnol J. 2024-1

[2]
Fabrication and evaluation of optical nanobiosensor based on localized surface plasmon resonance (LSPR) of gold nanorod for detection of CRP.

Anal Chim Acta. 2023-1-2

[3]
Hybrid Gold Nanorod-Based Nanoplatform with Chemo and Photothermal Activities for Bimodal Cancer Therapy.

Int J Mol Sci. 2022-10-28

[4]
Application of Mesoporous Silica Nanoparticles in Cancer Therapy and Delivery of Repurposed Anthelmintics for Cancer Therapy.

Pharmaceutics. 2022-7-29

[5]
Surface modifications of gold nanoparticles: stabilization and recent applications in cancer therapy.

Pharm Dev Technol. 2022-7

[6]
Gold Nanorod-Assisted Photothermal Therapy and Improvement Strategies.

Bioengineering (Basel). 2022-5-5

[7]
Structural Characterization of a Low Molecular Weight HG-Type Pectin From Gougunao Green Tea.

Front Nutr. 2022-4-13

[8]
The Applications of Gold Nanoparticles in the Diagnosis and Treatment of Gastrointestinal Cancer.

Front Oncol. 2022-1-19

[9]
Cancer Therapy by Silver Nanoparticles: Fiction or Reality?

Int J Mol Sci. 2022-1-13

[10]
Reactive Oxygen Species (ROS) Regulates Different Types of Cell Death by Acting as a Rheostat.

Oxid Med Cell Longev. 2021

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索