Xu Xiaoxuan, Xing Youqiang, Liu Lei
School of Business and Trade, Nanjing Vocational University of Industry Technology, Nanjing 210023, China.
Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China.
Micromachines (Basel). 2023 Oct 27;14(11):1996. doi: 10.3390/mi14111996.
Utilizing interface engineering to construct abundant heterogeneous interfaces is an important means to improve the absorbing performance of microwave absorbers. Here, we have prepared the MXene/MoS-ReS (MMR) composite with rich heterogeneous interfaces composed of two-dimensional TiCTx MXene and two-dimensional transition metal disulfides through a facile hydrothermal process. The surface of MXene is completely covered by nanosheets of MoS and ReS, forming a hybrid structure. MRR exhibits excellent absorption performance, with its strongest reflection loss reaching -51.15 dB at 2.0 mm when the filling ratio is only 10 wt%. Meanwhile, the effective absorption bandwidth covers the range of 5.5-18 GHz. Compared to MXene/MoS composites, MRR with a MoS-ReS heterogeneous interface exhibits stronger polarization loss ability and superior absorption efficiency at the same thickness. This study provides a reference for the design of transition metal disulfides-based absorbing materials.
利用界面工程构建丰富的异质界面是提高微波吸收体吸收性能的重要手段。在此,我们通过简便的水热法制备了由二维TiCTx MXene和二维过渡金属二硫化物组成的具有丰富异质界面的MXene/MoS-ReS(MMR)复合材料。MXene的表面完全被MoS和ReS的纳米片覆盖,形成了一种混合结构。MMR表现出优异的吸收性能,当填充率仅为10 wt%时,其在2.0 mm处的最强反射损耗达到-51.15 dB。同时,有效吸收带宽覆盖5.5-18 GHz范围。与MXene/MoS复合材料相比,具有MoS-ReS异质界面的MMR在相同厚度下表现出更强的极化损耗能力和更高的吸收效率。本研究为基于过渡金属二硫化物的吸收材料设计提供了参考。