Suppr超能文献

核壳结构三金属硫化物@氮掺杂碳复合材料作为用于增强锂离子存储性能的阳极

Core-Shell Structure Trimetallic Sulfide@N-Doped Carbon Composites as Anodes for Enhanced Lithium-Ion Storage Performance.

作者信息

Li Xiuyan, Zhu Liangxing, Yang Chenyu, Wang Yinan, Gu Shaonan, Zhou Guowei

机构信息

School of Chemical Engineering and Environment, Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Weifang 262700, China.

Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-Scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.

出版信息

Molecules. 2023 Nov 14;28(22):7580. doi: 10.3390/molecules28227580.

Abstract

The high specific capacity of transition metal sulfides (TMSs) opens up a promising new development direction for lithium-ion batteries with high energy storage. However, the poor conductivity and serious volume expansion during charge and discharge hinder their further development. In this work, trimetallic sulfide Zn-Co-Fe-S@nitrogen-doped carbon (Zn-Co-Fe-S@N-C) polyhedron composite with a core-shell structure is synthesized through a simple self-template method using ZnCoFe-ZIF as precursor, followed by a dopamine surface polymerization process and sulfidation during high-temperature calcination. The obvious space between the internal core and the external shell of the Zn-Co-Fe-S@N-C composites can effectively alleviate the volume expansion and shorten the diffusion path of Li ions during charge and discharge cycles. The nitrogen-doped carbon shell not only significantly improves the electrical conductivity of the material, but also strengthens the structural stability of the material. The synergistic effect between polymetallic sulfides improves the electrochemical reactivity. When used as an anode in lithium-ion batteries (LIBs), the prepared Zn-Co-Fe-S@N-C composite exhibits a high specific capacity retention (966.6 mA h g after 100 cycles at current rate of 100 mA g) and good cyclic stability (499.17 mA h g after 120 cycles at current rate of 2000 mA g).

摘要

过渡金属硫化物(TMSs)的高比容量为高储能锂离子电池开辟了一个有前景的新发展方向。然而,其较差的导电性以及充放电过程中的严重体积膨胀阻碍了它们的进一步发展。在这项工作中,以ZnCoFe-ZIF为前驱体,通过简单的自模板法合成了具有核壳结构的三金属硫化物Zn-Co-Fe-S@氮掺杂碳(Zn-Co-Fe-S@N-C)多面体复合材料,随后经过多巴胺表面聚合过程以及高温煅烧期间的硫化过程。Zn-Co-Fe-S@N-C复合材料内核与外壳之间明显的空间能够有效缓解体积膨胀,并缩短充放电循环过程中锂离子的扩散路径。氮掺杂碳壳不仅显著提高了材料的导电性,还增强了材料的结构稳定性。多金属硫化物之间的协同效应提高了电化学反应活性。当用作锂离子电池(LIBs)的负极时,制备的Zn-Co-Fe-S@N-C复合材料表现出高比容量保持率(在100 mA g的电流密度下循环100次后为966.6 mA h g)和良好的循环稳定性(在2000 mA g的电流密度下循环120次后为499.17 mA h g)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e96/10673174/6f18dcf89a1a/molecules-28-07580-sch001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验