School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, China.
School of Life & Environmental Science, Guilin University of Electronic Technology, Guilin 541004, China.
Sensors (Basel). 2023 Nov 9;23(22):9057. doi: 10.3390/s23229057.
We aimed to estimate cardiac output (CO) from photoplethysmography (PPG) and the arterial pressure waveform (ART) using a deep learning approach, which is minimally invasive, does not require patient demographic information, and is operator-independent, eliminating the need to artificially extract a feature of the waveform by implementing a traditional formula. We aimed to present an alternative to measuring cardiac output with greater accuracy for a wider range of patients. Using a publicly available dataset, we selected 543 eligible patients and divided them into test and training sets after preprocessing. The data consisted of PPG and ART waveforms containing 2048 points with the corresponding CO. We achieved an improvement based on the U-Net modeling framework and built a two-channel deep learning model to automatically extract the waveform features to estimate the CO in the dataset as the reference, acquired using the EV1000, a commercially available instrument. The model demonstrated strong consistency with the reference values on the test dataset. The mean CO was 5.01 ± 1.60 L/min and 4.98 ± 1.59 L/min for the reference value and the predicted value, respectively. The average bias was -0.04 L/min with a -1.025 and 0.944 L/min 95% limit of agreement (LOA). The bias was 0.79% with a 95% LOA between -20.4% and 18.8% when calculating the percentage of the difference from the reference. The normalized root-mean-squared error (RMSNE) was 10.0%. The Pearson correlation coefficient (r) was 0.951. The percentage error (PE) was 19.5%, being below 30%. These results surpassed the performance of traditional formula-based calculation methods, meeting clinical acceptability standards. We propose a dual-channel, improved U-Net deep learning model for estimating cardiac output, demonstrating excellent and consistent results. This method offers a superior reference method for assessing cardiac output in cases where it is unnecessary to employ specialized cardiac output measurement devices or when patients are not suitable for pulmonary-artery-catheter-based measurements, providing a viable alternative solution.
我们旨在使用深度学习方法从光体积描记法 (PPG) 和动脉压力波形 (ART) 估计心输出量 (CO),这种方法微创、不需要患者人口统计学信息且操作员独立,无需通过实施传统公式来人工提取波形特征。我们旨在为更广泛的患者提供更准确的 CO 测量替代方法。我们使用公开可用的数据集,选择了 543 名合格的患者,并在预处理后将其分为测试集和训练集。该数据包含包含 2048 个点的 PPG 和 ART 波形以及相应的 CO。我们在 U-Net 建模框架的基础上取得了改进,并构建了一个双通道深度学习模型,自动提取波形特征以估计数据集的 CO,该数据集是使用市售的 EV1000 仪器获得的。该模型在测试数据集上与参考值具有很强的一致性。参考值和预测值的平均 CO 分别为 5.01 ± 1.60 L/min 和 4.98 ± 1.59 L/min。平均偏差为 -0.04 L/min,-1.025 和 0.944 L/min 的 95%一致性限(LOA)。当计算与参考值的差异百分比时,偏差为 0.79%,95% LOA 为-20.4%至 18.8%。归一化均方根误差(RMSNE)为 10.0%。Pearson 相关系数 (r) 为 0.951。百分比误差 (PE) 为 19.5%,低于 30%。这些结果超过了传统基于公式的计算方法的性能,符合临床可接受标准。我们提出了一种双通道改进的 U-Net 深度学习模型来估计心输出量,该模型具有出色且一致的结果。在没有必要使用专门的心输出量测量设备或患者不适合肺动脉导管测量的情况下,该方法为评估心输出量提供了一种更好的参考方法,提供了一种可行的替代解决方案。