Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
Sci Data. 2022 Jun 8;9(1):279. doi: 10.1038/s41597-022-01411-5.
In modern anesthesia, multiple medical devices are used simultaneously to comprehensively monitor real-time vital signs to optimize patient care and improve surgical outcomes. However, interpreting the dynamic changes of time-series biosignals and their correlations is a difficult task even for experienced anesthesiologists. Recent advanced machine learning technologies have shown promising results in biosignal analysis, however, research and development in this area is relatively slow due to the lack of biosignal datasets for machine learning. The VitalDB (Vital Signs DataBase) is an open dataset created specifically to facilitate machine learning studies related to monitoring vital signs in surgical patients. This dataset contains high-resolution multi-parameter data from 6,388 cases, including 486,451 waveform and numeric data tracks of 196 intraoperative monitoring parameters, 73 perioperative clinical parameters, and 34 time-series laboratory result parameters. All data is stored in the public cloud after anonymization. The dataset can be freely accessed and analysed using application programming interfaces and Python library. The VitalDB public dataset is expected to be a valuable resource for biosignal research and development.
在现代麻醉学中,同时使用多种医疗设备来全面监测实时生命体征,以优化患者护理并改善手术效果。然而,即使对于经验丰富的麻醉师来说,解释时间序列生物信号及其相关性的动态变化也是一项艰巨的任务。最近的先进机器学习技术在生物信号分析方面显示出了有希望的结果,但是由于缺乏用于机器学习的生物信号数据集,该领域的研究和开发相对缓慢。VitalDB(生命体征数据库)是一个专门创建的开放数据集,旨在促进与监测手术患者生命体征相关的机器学习研究。该数据集包含来自 6388 例患者的高分辨率多参数数据,包括 196 个术中监测参数、73 个围手术期临床参数和 34 个时间序列实验室结果参数的 486,451 个波形和数值数据轨迹。所有数据在匿名化后存储在公共云中。可以使用应用程序编程接口和 Python 库自由访问和分析该数据集。VitalDB 公共数据集有望成为生物信号研究和开发的宝贵资源。