Suppr超能文献

基于 CNN 的自注意力权重提取,用于使用平衡测试分数预测跌倒事件。

CNN-Based Self-Attention Weight Extraction for Fall Event Prediction Using Balance Test Score.

机构信息

CLI Department, University of Paris 8, 93200 Saint-Denis, France.

Laboratoire Analyse, Géométrie et Applications, University of Sorbonne Paris Nord, 93430 Villetaneuse, France.

出版信息

Sensors (Basel). 2023 Nov 15;23(22):9194. doi: 10.3390/s23229194.

Abstract

Injury, hospitalization, and even death are common consequences of falling for elderly people. Therefore, early and robust identification of people at risk of recurrent falling is crucial from a preventive point of view. This study aims to evaluate the effectiveness of an interpretable semi-supervised approach in identifying individuals at risk of falls by using the data provided by ankle-mounted IMU sensors. Our method benefits from the cause-effect link between a fall event and balance ability to pinpoint the moments with the highest fall probability. This framework also has the advantage of training on unlabeled data, and one can exploit its interpretation capacities to detect the target while only using patient metadata, especially those in relation to balance characteristics. This study shows that a visual-based self-attention model is able to infer the relationship between a fall event and loss of balance by attributing high values of weight to moments where the vertical acceleration component of the IMU sensors exceeds 5 m/s² during an especially short period. This semi-supervised approach uses interpretable features to highlight the moments of the recording that may explain the score of balance, thus revealing the moments with the highest risk of falling. Our model allows for the detection of 71% of the possible falling risk events in a window of 1 s (500 ms before and after the target) when compared with threshold-based approaches. This type of framework plays a paramount role in reducing the costs of annotation in the case of fall prevention when using wearable devices. Overall, this adaptive tool can provide valuable data to healthcare professionals, and it can assist them in enhancing fall prevention efforts on a larger scale with lower costs.

摘要

伤害、住院甚至死亡是老年人跌倒的常见后果。因此,从预防的角度来看,及早发现和识别易发生反复跌倒的高危人群至关重要。本研究旨在评估一种可解释的半监督方法在利用脚踝佩戴的 IMU 传感器提供的数据识别跌倒风险个体方面的有效性。我们的方法受益于跌倒事件与平衡能力之间的因果关系,能够精确定位跌倒概率最高的时刻。该框架还具有在未标记数据上进行训练的优势,并且可以利用其解释能力来检测目标,而仅使用患者元数据,特别是与平衡特征相关的元数据。本研究表明,基于视觉的自注意力模型能够通过在 IMU 传感器的垂直加速度分量在特别短的时间段内超过 5 m/s²时赋予权重值较高的方式,推断跌倒事件与平衡丧失之间的关系。这种半监督方法使用可解释的特征来突出记录中的时刻,这些时刻可能解释平衡得分,从而揭示跌倒风险最高的时刻。与基于阈值的方法相比,我们的模型可以在 1 秒(目标前 500 毫秒和后 500 毫秒)的窗口中检测到 71%的可能跌倒风险事件。在使用可穿戴设备进行跌倒预防的情况下,这种类型的框架在减少注释成本方面发挥着至关重要的作用。总的来说,这种自适应工具可以为医疗保健专业人员提供有价值的数据,并帮助他们以更低的成本在更大范围内加强跌倒预防工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/def7/10675741/82c4b8a7d52f/sensors-23-09194-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验