Luo Jiamin, Yao Yuan, Yin Qiuyan
School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China.
Key Laboratory of Pattern Recognition and Intelligent Information Processing of Sichuan Province, Chengdu University, Chengdu 610106, China.
Sensors (Basel). 2023 Nov 16;23(22):9206. doi: 10.3390/s23229206.
Surface urban heat islands (SUHIs) are mostly an urban ecological issue. There is a growing demand for the quantification of the SUHI effect, and for its optimization to mitigate the increasing possible hazards caused by SUHI. Satellite-derived land surface temperature (LST) is an important indicator for quantifying SUHIs with frequent coverage. Current LST data with high spatiotemporal resolution is still lacking due to no single satellite sensor that can resolve the trade-off between spatial and temporal resolutions and this greatly limits its applications. To address this issue, we propose a multiscale geographically weighted regression (MGWR) coupling the comprehensive, flexible, spatiotemporal data fusion (CFSDAF) method to generate a high-spatiotemporal-resolution LST dataset. We then analyzed the SUHI intensity (SUHII) in Chengdu City, a typical cloudy and rainy city in China, from 2002 to 2022. Finally, we selected thirteen potential driving factors of SUHIs and analyzed the relation between these thirteen influential drivers and SUHIIs. Results show that: (1) an MGWR outperforms classic methods for downscaling LST, namely geographically weighted regression (GWR) and thermal image sharpening (TsHARP); (2) compared to classic spatiotemporal fusion methods, our method produces more accurate predicted LST images (, RMSE, AAD values were in the range of 0.8103 to 0.9476, 1.0601 to 1.4974, 0.8455 to 1.3380); (3) the average summer daytime SUHII increased form 2.08 °C (suburban area as 50% of the urban area) and 2.32 °C (suburban area as 100% of the urban area) in 2002 to 4.93 °C and 5.07 °C, respectively, in 2022 over Chengdu City; and (4) the anthropogenic activity drivers have a higher relative influence on SUHII than other drivers. Therefore, anthropogenic activity driving factors should be considered with CO emissions and land use changes for urban planning to mitigate the SUHI effect.
城市地表热岛(SUHIs)主要是一个城市生态问题。对SUHI效应进行量化以及对其进行优化以减轻SUHI可能带来的日益增加的危害的需求日益增长。卫星反演的陆地表面温度(LST)是用于频繁覆盖量化SUHIs的重要指标。由于没有单一的卫星传感器能够解决空间和时间分辨率之间的权衡问题,目前仍缺乏具有高时空分辨率的LST数据,这极大地限制了其应用。为了解决这个问题,我们提出了一种多尺度地理加权回归(MGWR)与综合、灵活的时空数据融合(CFSDAF)方法相结合,以生成高时空分辨率的LST数据集。然后,我们分析了中国典型的多云多雨城市成都市2002年至2022年的SUHI强度(SUHII)。最后,我们选择了SUHIs的13个潜在驱动因素,并分析了这13个影响驱动因素与SUHIIs之间的关系。结果表明:(1)MGWR在降尺度LST方面优于经典方法,即地理加权回归(GWR)和热图像锐化(TsHARP);(2)与经典的时空融合方法相比,我们的方法生成的预测LST图像更准确(RMSE、AAD值在0.8103至0.9476、1.0601至1.4974、0.8455至1.3380范围内);(3)成都市夏季白天SUHII的平均值从2002年的2.08℃(郊区面积为市区面积的50%)和2.32℃(郊区面积为市区面积的100%)分别增加到2022年的4.93℃和5.07℃;(4)人为活动驱动因素对SUHII的相对影响高于其他驱动因素。因此,在城市规划中应考虑人为活动驱动因素以及碳排放和土地利用变化,以减轻SUHI效应。