Suppr超能文献

基于流固相互作用的微流体粘度计灵敏度优化:多物理场模拟研究

Optimizing Sensitivity in a Fluid-Structure Interaction-Based Microfluidic Viscometer: A Multiphysics Simulation Study.

作者信息

Mustafa Adil, Ertas Uslu Merve, Tanyeri Melikhan

机构信息

Department of Engineering Mathematics, University of Bristol, Bristol BS8 1TW, UK.

Department of Biomedical Engineering, School of Science and Engineering, Duquesne University, Pittsburgh, PA 15282, USA.

出版信息

Sensors (Basel). 2023 Nov 18;23(22):9265. doi: 10.3390/s23229265.

Abstract

Fluid-structure interactions (FSI) are used in a variety of sensors based on micro- and nanotechnology to detect and measure changes in pressure, flow, and viscosity of fluids. These sensors typically consist of a flexible structure that deforms in response to the fluid flow and generates an electrical, optical, or mechanical signal that can be measured. FSI-based sensors have recently been utilized in applications such as biomedical devices, environmental monitoring, and aerospace engineering, where the accurate measurement of fluid properties is critical to ensure performance and safety. In this work, multiphysics models are employed to identify and study parameters that affect the performance of an FSI-based microfluidic viscometer that measures the viscosity of Newtonian and non-Newtonian fluids using the deflection of flexible micropillars. Specifically, we studied the impact of geometric parameters such as pillar diameter and height, aspect ratio of the pillars, pillar spacing, and the distance between the pillars and the channel walls. Our study provides design guidelines to adjust the sensitivity of the viscometer toward specific applications. Overall, this highly sensitive microfluidic sensor can be integrated into complex systems and provide real-time monitoring of fluid viscosity.

摘要

流固相互作用(FSI)被用于各种基于微纳技术的传感器中,以检测和测量流体的压力、流量及粘度变化。这些传感器通常由一个柔性结构组成,该结构会随着流体流动而变形,并产生可被测量的电、光或机械信号。基于FSI的传感器最近已应用于生物医学设备、环境监测和航空航天工程等领域,在这些领域中,流体特性的精确测量对于确保性能和安全至关重要。在这项工作中,采用多物理场模型来识别和研究影响基于FSI的微流体粘度计性能的参数,该粘度计利用柔性微柱的偏转来测量牛顿流体和非牛顿流体的粘度。具体而言,我们研究了诸如柱直径和高度、柱的纵横比、柱间距以及柱与通道壁之间的距离等几何参数的影响。我们的研究提供了设计指南,以调整粘度计对特定应用的灵敏度。总体而言,这种高灵敏度的微流体传感器可集成到复杂系统中,并提供流体粘度的实时监测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a79/10675072/08812ccebe6a/sensors-23-09265-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验