Suppr超能文献

探索番茄中的脱氧-D-木酮糖-5-磷酸合酶基因家族()。

Exploring the Deoxy-D-xylulose-5-phosphate Synthase Gene Family in Tomato ().

作者信息

Di Xueni, Rodriguez-Concepcion Manuel

机构信息

Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, 46022 Valencia, Spain.

出版信息

Plants (Basel). 2023 Nov 17;12(22):3886. doi: 10.3390/plants12223886.

Abstract

Isoprenoids are a wide family of metabolites including high-value chemicals, flavors, pigments, and drugs. Isoprenoids are particularly abundant and diverse in plants. The methyl-D-erythritol 4-phosphate (MEP) pathway produces the universal isoprenoid precursors isopentenyl diphosphate and dimethylallyl diphosphate in plant plastids for the downstream production of monoterpenes, diterpenes, and photosynthesis-related isoprenoids such as carotenoids, chlorophylls, tocopherols, phylloquinone, and plastoquinone. The enzyme deoxy-D-xylulose 5-phosphate synthase (DXS) is the first and main rate-determining enzyme of the MEP pathway. In tomato (), a plant with an active isoprenoid metabolism in several tissues, three genes encode DXS-like proteins (SlDXS1 to 3). Here, we show that the expression patterns of the three genes suggest distinct physiological roles without excluding that they might function together in some tissues. We also confirm that SlDXS1 and 2 are true DXS enzymes, whereas SlDXS3 lacks DXS activity. We further show that SlDXS1 and 2 co-localize in plastidial speckles and that they can be immunoprecipitated together, suggesting that they might form heterodimers in vivo in at least some tissues. These results provide novel insights for the biotechnological use of DXS isoforms in metabolic engineering strategies to up-regulate the MEP pathway flux.

摘要

类异戊二烯是一大类代谢产物,包括高价值化学品、香料、色素和药物。类异戊二烯在植物中特别丰富且多样。甲基-D-赤藓糖醇-4-磷酸(MEP)途径在植物质体中产生通用的类异戊二烯前体异戊烯基二磷酸和二甲基烯丙基二磷酸,用于下游单萜、二萜以及与光合作用相关的类异戊二烯(如类胡萝卜素、叶绿素、生育酚、叶绿醌和质体醌)的合成。脱氧-D-木酮糖-5-磷酸合酶(DXS)是MEP途径的首个也是主要的限速酶。在番茄(一种在多个组织中具有活跃类异戊二烯代谢的植物)中,有三个基因编码类DXS蛋白(SlDXS1至3)。在此,我们表明这三个基因的表达模式暗示了不同的生理作用,但不排除它们可能在某些组织中共同发挥作用。我们还证实SlDXS1和2是真正的DXS酶,而SlDXS3缺乏DXS活性。我们进一步表明SlDXS1和2共定位于质体斑点中,并且它们可以一起被免疫沉淀,这表明它们可能在体内至少某些组织中形成异二聚体。这些结果为在代谢工程策略中上调MEP途径通量时生物技术利用DXS同工型提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e38/10675008/8dbe3dd69ea6/plants-12-03886-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验