Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada.
Department of Biology, University of Toronto-Mississauga, Mississauga, ON, L5L 1C6, Canada.
Nat Commun. 2024 Feb 6;15(1):1102. doi: 10.1038/s41467-024-45384-y.
The Entner-Doudoroff (ED) pathway provides an alternative to glycolysis. It converts 6-phosphogluconate (6-PG) to glyceraldehyde-3-phosphate and pyruvate in two steps consisting of a dehydratase (EDD) and an aldolase (EDA). Here, we investigate its distribution and significance in higher plants and determine the ED pathway is restricted to prokaryotes due to the absence of EDD genes in eukaryotes. EDDs share a common origin with dihydroxy-acid dehydratases (DHADs) of the branched chain amino acid pathway (BCAA). Each dehydratase features strict substrate specificity. E. coli EDD dehydrates 6-PG to 2-keto-3-deoxy-6-phosphogluconate, while DHAD only dehydrates substrates from the BCAA pathway. Structural modeling identifies two divergent domains which account for their non-overlapping substrate affinities. Coupled enzyme assays confirm only EDD participates in the ED pathway. Plastid ancestors lacked EDD but transferred metabolically promiscuous EDA, which explains the absence of the ED pathway from the Viridiplantae and sporadic persistence of EDA genes across the plant kingdom.
Entner-Doudoroff(ED)途径为糖酵解提供了一种替代途径。它由两步组成,将 6-磷酸葡萄糖(6-PG)转化为甘油醛-3-磷酸和丙酮酸,其中包括脱水酶(EDD)和醛缩酶(EDA)。在这里,我们研究了它在高等植物中的分布和意义,并确定由于真核生物中缺乏 EDD 基因,ED 途径仅限于原核生物。EDD 与支链氨基酸途径(BCAA)的二羟酸脱水酶(DHAD)具有共同的起源。每个脱水酶都具有严格的底物特异性。大肠杆菌 EDD 将 6-PG 脱水为 2-酮-3-脱氧-6-磷酸葡萄糖,而 DHAD 仅脱水来自 BCAA 途径的底物。结构建模确定了两个不同的结构域,解释了它们非重叠的底物亲和力。偶联酶测定证实只有 EDD 参与 ED 途径。质体祖先缺乏 EDD,但转移了代谢上混杂的 EDA,这解释了 ED 途径在Viridiplantae 中的缺失以及 EDA 基因在整个植物界中的零星存在。