基于肿瘤细胞-基质异质性的放射基因组分析在乳腺癌中的预后预测价值。

Radiogenomic analysis of cellular tumor-stroma heterogeneity as a prognostic predictor in breast cancer.

机构信息

Institute of Intelligent Biomedicine, Hangzhou Dianzi University, Hangzhou, 310018, China.

Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, 322100, China.

出版信息

J Transl Med. 2023 Nov 25;21(1):851. doi: 10.1186/s12967-023-04748-6.

Abstract

BACKGROUND

The tumor microenvironment and intercellular communication between solid tumors and the surrounding stroma play crucial roles in cancer initiation, progression, and prognosis. Radiomics provides clinically relevant information from radiological images; however, its biological implications in uncovering tumor pathophysiology driven by cellular heterogeneity between the tumor and stroma are largely unknown. We aimed to identify radiogenomic signatures of cellular tumor-stroma heterogeneity (TSH) to improve breast cancer management and prognosis analysis.

METHODS

This retrospective multicohort study included five datasets. Cell subpopulations were estimated using bulk gene expression data, and the relative difference in cell subpopulations between the tumor and stroma was used as a biomarker to categorize patients into good- and poor-survival groups. A radiogenomic signature-based model utilizing dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was developed to target TSH, and its clinical significance in relation to survival outcomes was independently validated.

RESULTS

The final cohorts of 1330 women were included for cellular TSH biomarker identification (n = 112, mean age, 57.3 years ± 14.6) and validation (n = 886, mean age, 58.9 years ± 13.1), radiogenomic signature of TSH identification (n = 91, mean age, 55.5 years ± 11.4), and prognostic (n = 241) assessments. The cytotoxic lymphocyte biomarker differentiated patients into good- and poor-survival groups (p < 0.0001) and was independently validated (p = 0.014). The good survival group exhibited denser cell interconnections. The radiogenomic signature of TSH was identified and showed a positive association with overall survival (p = 0.038) and recurrence-free survival (p = 3 × 10).

CONCLUSION

Radiogenomic signatures provide insights into prognostic factors that reflect the imbalanced tumor-stroma environment, thereby presenting breast cancer-specific biological implications and prognostic significance.

摘要

背景

肿瘤微环境和实体瘤与周围基质之间的细胞间通讯在癌症的发生、进展和预后中起着关键作用。放射组学从放射图像中提供临床相关信息;然而,其在揭示由肿瘤和基质之间的细胞异质性驱动的肿瘤病理生理学方面的生物学意义在很大程度上尚不清楚。我们旨在确定细胞肿瘤-基质异质性(TSH)的放射基因组学特征,以改善乳腺癌的管理和预后分析。

方法

这项回顾性多队列研究包括五个数据集。使用批量基因表达数据估计细胞亚群,并且肿瘤和基质之间细胞亚群的相对差异被用作生物标志物将患者分为生存良好和生存不良组。开发了一种基于放射基因组学特征的模型,利用动态对比增强磁共振成像(DCE-MRI)来靶向 TSH,并独立验证其与生存结果相关的临床意义。

结果

最终纳入了 1330 名女性的细胞 TSH 生物标志物识别队列(n=112,平均年龄 57.3±14.6 岁)和验证队列(n=886,平均年龄 58.9±13.1 岁)、TSH 识别的放射基因组学特征(n=91,平均年龄 55.5±11.4 岁)和预后评估(n=241)。细胞毒性淋巴细胞生物标志物将患者分为生存良好和生存不良组(p<0.0001),并进行了独立验证(p=0.014)。生存良好组表现出更密集的细胞连接。鉴定了 TSH 的放射基因组学特征,并与总生存(p=0.038)和无复发生存(p=3×10)呈正相关。

结论

放射基因组学特征提供了反映失衡的肿瘤-基质环境的预后因素的深入了解,从而呈现出乳腺癌特有的生物学意义和预后意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7721/10675940/3eb0e7f688ec/12967_2023_4748_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索