Zhang Xu, Shen Yi-Yuan, Su Guan-Hua, Guo Yuan, Zheng Ren-Cheng, Du Si-Yao, Chen Si-Yi, Xiao Yi, Shao Zhi-Ming, Zhang Li-Na, Wang He, Jiang Yi-Zhou, Gu Ya-Jia, You Chao
Department of Radiology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.
Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.
Adv Sci (Weinh). 2025 Sep;12(33):e03925. doi: 10.1002/advs.202503925. Epub 2025 Jun 9.
Novel antibody-drug conjugates highlight the benefits for breast cancer patients with low human epidermal growth factor receptor 2 (HER2) expression. This study aims to develop and validate a Vision Transformer (ViT) model based on dynamic contrast-enhanced MRI (DCE-MRI) to classify HER2-zero, -low, and -positive breast cancer patients and to explore its interpretability. The model is trained and validated on early enhancement MRI images from 708 patients in the FUSCC cohort and tested on 80 and 101 patients in the GFPH cohort and FHCMU cohort, respectively. The ViT model achieves AUCs of 0.80, 0.73, and 0.71 in distinguishing HER2-zero from HER2-low/positive tumors across the validation set of the FUSCC cohort and the two external cohorts. Furthermore, the model effectively classifies HER2-low and HER2-positive cases, with AUCs of 0.86, 0.80, and 0.79. Transcriptomics analysis identifies significant biological differences between HER2-low and HER2-positive patients, particularly in immune-related pathways, suggesting potential therapeutic targets. Additionally, Cox regression analysis demonstrates that the prediction score is an independent prognostic factor for overall survival (HR, 2.52; p = 0.007). These findings provide a non-invasive approach for accurately predicting HER2 expression, enabling more precise patient stratification to guide personalized treatment strategies. Further prospective studies are warranted to validate its clinical utility.
新型抗体药物偶联物突显了对低人表皮生长因子受体2(HER2)表达的乳腺癌患者的益处。本研究旨在开发并验证一种基于动态对比增强磁共振成像(DCE-MRI)的视觉Transformer(ViT)模型,以对HER2零表达、低表达和阳性表达的乳腺癌患者进行分类,并探索其可解释性。该模型在FUSCC队列中708例患者的早期增强MRI图像上进行训练和验证,并分别在GFPH队列和FHCMU队列中的80例和101例患者上进行测试。在FUSCC队列的验证集和两个外部队列中,ViT模型在区分HER2零表达肿瘤与HER2低表达/阳性表达肿瘤方面的曲线下面积(AUC)分别为0.80、0.73和0.71。此外,该模型能有效区分HER2低表达和HER2阳性病例,AUC分别为0.86、0.80和0.79。转录组学分析确定了HER2低表达和HER2阳性患者之间的显著生物学差异,特别是在免疫相关途径方面,提示了潜在的治疗靶点。此外,Cox回归分析表明,预测评分是总生存的独立预后因素(风险比,2.52;p = 0.007)。这些发现提供了一种准确预测HER2表达的非侵入性方法,能够实现更精确的患者分层,以指导个性化治疗策略。有必要进行进一步的前瞻性研究来验证其临床实用性。