Suppr超能文献

利用深度学习对肿瘤基质进行放射学评估和治疗结果:一项回顾性、多队列研究。

Radiographical assessment of tumour stroma and treatment outcomes using deep learning: a retrospective, multicohort study.

机构信息

Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA.

Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen Colleges of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China.

出版信息

Lancet Digit Health. 2021 Jun;3(6):e371-e382. doi: 10.1016/S2589-7500(21)00065-0.

Abstract

BACKGROUND

The tumour stroma microenvironment plays an important part in disease progression and its composition can influence treatment response and outcomes. Histological evaluation of tumour stroma is limited by access to tissue, spatial heterogeneity, and temporal evolution. We aimed to develop a radiological signature for non-invasive assessment of tumour stroma and treatment outcomes.

METHODS

In this multicentre, retrospective study, we analysed CT images and outcome data of 2209 patients with resected gastric cancer from five independent cohorts recruited from two centres (Nanfang Hospital of Southern Medical University [Guangzhou, China] and Sun Yat-sen University Cancer Center [Guangzhou, China]). Patients with histologically confirmed gastric cancer, at least 15 lymph nodes harvested, preoperative abdominal CT available, and complete clinicopathological and follow-up data were eligible for inclusion. Tumour tissue was collected for patients in the training cohort (321 patients), internal validation cohort one (246 patients), and external validation cohort one (128 patients). Four stroma classes were defined according to the protein expression of α-smooth muscle actin and periostin assessed by immunohistochemistry. The primary objective was to predict the histologically based stroma classes by using preoperative CT images. We trained a deep convolutional neural network model using the training cohort and tested the model in the internal and external validation cohort one. We evaluated the model's association with prognosis in the training cohort, two internal, and two external validation cohorts and compared outcomes of patients who received or did not receive adjuvant chemotherapy.

FINDINGS

The deep-learning model achieved a high diagnostic accuracy for assessing tumour stroma in both internal validation cohort one (area under the receiver operating characteristic curve [AUC] 0·96-0·98]) and external validation cohort one (AUC 0·89-0·94). The stromal imaging signature was significantly associated with disease-free survival and overall survival in all cohorts (p<0·0001). The predicted stroma classes remained an independent prognostic factor adjusting for clinicopathological variables including tumour size, stage, differentiation, and Lauren histology. In patients with stage II or III disease in predicted stroma classes one and two subgroups, patients who received adjuvant chemotherapy had improved survival compared with those who did not (in those with stage II disease hazard ratio [HR] 0·48 [95% CI 0·29-0·77], p=0·0021; and in those with stage III disease HR 0·70 [0·57-0·85], p=0·00042). However, in the other two subgroups adjuvant chemotherapy was not associated with survival and might even be detrimental in the predicted stroma class 4 subgroup (HR 1·48 [1·08-2·03], p=0·013).

INTERPRETATION

The deep-learning model could allow for accurate and non-invasive evaluation of tumour stroma from CT images in gastric cancer. The radiographical model predicted chemotherapy outcomes and could be used in combination with clinicopathological criteria to refine prognosis and inform treatment decisions of patients with gastric cancer.

FUNDING

None.

摘要

背景

肿瘤间质微环境在疾病进展中起着重要作用,其组成可以影响治疗反应和结果。肿瘤间质的组织学评估受到组织获取、空间异质性和时间演变的限制。我们旨在开发一种放射学特征,用于无创评估肿瘤间质和治疗结果。

方法

在这项多中心、回顾性研究中,我们分析了来自两个中心(南方医科大学南方医院[广州]和中山大学肿瘤防治中心[广州])的五个独立队列中 2209 例经手术切除的胃癌患者的 CT 图像和预后数据。符合条件的患者包括经组织学证实的胃癌、至少 15 个淋巴结采集、术前腹部 CT 可用以及完整的临床病理和随访数据。在训练队列(321 例)、内部验证队列一(246 例)和外部验证队列一(128 例)中收集肿瘤组织。根据免疫组织化学评估的α-平滑肌肌动蛋白和骨膜蛋白的蛋白表达,定义了 4 种间质类别。主要目的是使用术前 CT 图像预测基于组织学的间质类别。我们使用训练队列训练深度卷积神经网络模型,并在内部验证队列一和外部验证队列一中进行测试。我们评估了模型在训练队列中的预后相关性,并在两个内部和两个外部验证队列中进行了比较,并比较了接受或未接受辅助化疗的患者的治疗结果。

结果

深度学习模型在内部验证队列一(接受者操作特征曲线下面积[AUC]0.96-0.98])和外部验证队列一(AUC 0.89-0.94)中对评估肿瘤间质具有较高的诊断准确性。间质成像特征与所有队列的无病生存率和总生存率显著相关(p<0.0001)。在预测的间质类别中,即使在包括肿瘤大小、分期、分化和劳伦组织学在内的临床病理变量调整后,预测的间质类别仍然是一个独立的预后因素。在预测的间质类别 1 和 2 亚组的 II 期或 III 期疾病患者中,接受辅助化疗的患者的生存率优于未接受化疗的患者(II 期疾病风险比[HR]0.48[95%CI0.29-0.77],p=0.0021;III 期疾病 HR0.70[0.57-0.85],p=0.00042)。然而,在其他两个亚组中,辅助化疗与生存无关,甚至在预测的间质类别 4 亚组中可能有害(HR1.48[1.08-2.03],p=0.013)。

解释

深度学习模型可以从胃癌的 CT 图像中进行准确、无创的肿瘤间质评估。放射学模型预测化疗结果,可与临床病理标准结合使用,以细化预后并为胃癌患者的治疗决策提供信息。

资金

无。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验