Suppr超能文献

在贝叶斯方法下监测过程均值及其在硬烘焙过程中的应用。

Monitoring the process mean under the Bayesian approach with application to hard bake process.

作者信息

Khan Imad, Noor-Ul-Amin Muhammad, Khan Dost Muhammad, Ismail Emad A A, Yasmeen Uzma, Rahimi Javed

机构信息

Department of Statistics, Abdul Wali Khan University Mardan, Mardan, Pakistan.

Department of Statistics, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan.

出版信息

Sci Rep. 2023 Nov 25;13(1):20723. doi: 10.1038/s41598-023-48206-1.

Abstract

This study introduces the Bayesian adaptive exponentially weighted moving average (AEWMA) control chart within the framework of measurement error, examining two separate loss functions: the squared error loss function and the linex loss function. We conduct an analysis of the posterior and posterior predictive distributions utilizing a conjugate prior. In the presence of measurement error (ME), we employ a linear covariate model to assess the control chart's effectiveness. Additionally, we explore the impacts of measurement error by investigating multiple measurements and a method involving linearly increasing variance. We conduct a Monte Carlo simulation study to assess the control chart's performance under ME, examining its run length profile. Subsequently, we offer a specific numerical instance related to the hard-bake process in semiconductor manufacturing, serving to verify the functionality and practical application of the suggested Bayesian AEWMA control chart when confronted with ME.

摘要

本研究在测量误差框架内引入贝叶斯自适应指数加权移动平均(AEWMA)控制图,研究两个单独的损失函数:平方误差损失函数和线性指数损失函数。我们利用共轭先验对后验分布和后验预测分布进行分析。在存在测量误差(ME)的情况下,我们采用线性协变量模型来评估控制图的有效性。此外,我们通过研究多次测量和一种涉及线性增加方差的方法来探讨测量误差的影响。我们进行蒙特卡罗模拟研究,以评估控制图在测量误差情况下的性能,检查其运行长度分布。随后,我们提供一个与半导体制造中的硬烘焙过程相关的具体数值实例,以验证所建议的贝叶斯AEWMA控制图在面对测量误差时的功能和实际应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7498/10676415/21c9e9764364/41598_2023_48206_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验