诺丁汉缺血性心血管磁共振资源(NotIs CMR):一项前瞻性配对临床和影像瘢痕数据库方案。
The Nottingham Ischaemic Cardiovascular Magnetic Resonance resource (NotIs CMR): a prospective paired clinical and imaging scar database-protocol.
机构信息
Department of Cardiology, Nottingham University Hospitals NHS Trust, Nottingham, UK.
Queen's Medical Centre, NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK.
出版信息
J Cardiovasc Magn Reson. 2023 Nov 27;25(1):69. doi: 10.1186/s12968-023-00978-1.
INTRODUCTION
Research utilising artificial intelligence (AI) and cardiovascular magnetic resonance (CMR) is rapidly evolving with various objectives, however AI model development, generalisation and performance may be hindered by availability of robust training datasets including contrast enhanced images.
METHODS
NotIs CMR is a large UK, prospective, multicentre, observational cohort study to guide the development of a biventricular AI scar model. Patients with ischaemic heart disease undergoing clinically indicated contrast-enhanced cardiac magnetic resonance imaging will be recruited at Nottingham University Hospitals NHS Trust and Mid-Yorkshire Hospital NHS Trust. Baseline assessment will include cardiac magnetic resonance imaging, demographic data, medical history, electrocardiographic and serum biomarkers. Participants will undergo monitoring for a minimum of 5 years to document any major cardiovascular adverse events. The main objectives include (1) AI training, validation and testing to improve the performance, applicability and adaptability of an AI biventricular scar segmentation model being developed by the authors and (2) develop a curated, disease-specific imaging database to support future research and collaborations and, (3) to explore associations in clinical outcome for future risk prediction modelling studies.
CONCLUSION
NotIs CMR will collect and curate disease-specific, paired imaging and clinical datasets to develop an AI biventricular scar model whilst providing a database to support future research and collaboration in Artificial Intelligence and ischaemic heart disease.
简介
利用人工智能(AI)和心血管磁共振(CMR)的研究正在迅速发展,其目的各不相同,但是 AI 模型的开发、推广和性能可能会受到稳健的训练数据集的可用性的阻碍,这些数据集包括增强对比度的图像。
方法
NotIs CMR 是一项英国前瞻性、多中心、观察性队列研究,旨在指导双心室 AI 疤痕模型的开发。将在诺丁汉大学医院 NHS 信托基金会和米德约克郡医院 NHS 信托基金会招募患有缺血性心脏病且需要进行临床指示的对比增强心脏磁共振成像的患者。基线评估将包括心脏磁共振成像、人口统计学数据、病史、心电图和血清生物标志物。参与者将接受至少 5 年的监测,以记录任何重大心血管不良事件。主要目标包括:(1)AI 培训、验证和测试,以提高作者开发的 AI 双心室疤痕分割模型的性能、适用性和可适应性;(2)开发一个经过精心策划的、特定于疾病的成像数据库,以支持未来的研究和合作;(3)探索临床结果之间的关联,以进行未来的风险预测建模研究。
结论
NotIs CMR 将收集和策划特定于疾病的、配对的成像和临床数据集,以开发 AI 双心室疤痕模型,同时提供一个数据库,以支持未来在人工智能和缺血性心脏病领域的研究和合作。
相似文献
J Cardiovasc Magn Reson. 2022-6-27
J Cardiovasc Magn Reson. 2019-7-29
本文引用的文献
Cardiovasc Digit Health J. 2021-11-24
J Am Coll Cardiol. 2021-1-26
Front Cardiovasc Med. 2020-8-7
Front Cardiovasc Med. 2020-3-5
J Cardiovasc Magn Reson. 2019-10-7
Can Assoc Radiol J. 2019-9-12