Suppr超能文献

基于放射组学和深度学习的肥厚型心肌病心肌瘢痕筛查。

Radiomics and deep learning for myocardial scar screening in hypertrophic cardiomyopathy.

机构信息

Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA.

Cardiovascular Center, Tufts Medical Center, Boston, USA.

出版信息

J Cardiovasc Magn Reson. 2022 Jun 27;24(1):40. doi: 10.1186/s12968-022-00869-x.

Abstract

BACKGROUND

Myocardial scar burden quantified using late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR), has important prognostic value in hypertrophic cardiomyopathy (HCM). However, nearly 50% of HCM patients have no scar but undergo repeated gadolinium-based CMR over their life span. We sought to develop an artificial intelligence (AI)-based screening model using radiomics and deep learning (DL) features extracted from balanced steady state free precession (bSSFP) cine sequences to identify HCM patients without scar.

METHODS

We evaluated three AI-based screening models using bSSFP cine image features extracted by radiomics, DL, or combined DL-Radiomics. Images for 759 HCM patients (50 ± 16 years, 66% men) in a multi-center/vendor study were used to develop and test model performance. An external dataset of 100 HCM patients (53 ± 14 years, 70% men) was used to assess model generalizability. Model performance was evaluated using area-under-receiver-operating curve (AUC).

RESULTS

The DL-Radiomics model demonstrated higher AUC compared to DL and Radiomics in the internal (0.83 vs 0.77, p = 0.006 and 0.78, p = 0.05; n = 159) and external (0.74 vs 0.64, p = 0.006 and 0.71, p = 0.27; n = 100) datasets. The DL-Radiomics model correctly identified 43% and 28% of patients without scar in the internal and external datasets compared to 42% and 16% by Radiomics model and 42% and 23% by DL model, respectively.

CONCLUSIONS

A DL-Radiomics AI model using bSSFP cine images outperforms DL or Radiomics models alone as a scar screening tool prior to gadolinium administration. Despite its potential, the clinical utility of the model remains limited and further investigation is needed to improve the accuracy and generalizability.

摘要

背景

使用晚期钆增强(LGE)心血管磁共振(CMR)量化心肌瘢痕负担在肥厚型心肌病(HCM)中有重要的预后价值。然而,近 50%的 HCM 患者没有瘢痕,但在其一生中会进行多次基于钆的 CMR。我们试图开发一种基于人工智能(AI)的筛查模型,使用从平衡稳态自由进动(bSSFP)电影序列中提取的放射组学和深度学习(DL)特征来识别没有瘢痕的 HCM 患者。

方法

我们使用 bSSFP 电影图像特征评估了三种基于 AI 的筛查模型,这些特征是通过放射组学、DL 或结合了 DL 和放射组学的方法提取的。多中心/多供应商研究中 759 例 HCM 患者(50±16 岁,66%为男性)的图像用于开发和测试模型性能。一个 100 例 HCM 患者(53±14 岁,70%为男性)的外部数据集用于评估模型的通用性。使用受试者工作特征曲线下面积(AUC)评估模型性能。

结果

在内部(0.83 对 0.77,p=0.006 和 0.78,p=0.05;n=159)和外部(0.74 对 0.64,p=0.006 和 0.71,p=0.27;n=100)数据集,DL-Radiomics 模型的 AUC 明显高于 DL 和放射组学模型。与放射组学模型(分别为 43%和 28%)和 DL 模型(分别为 42%和 23%)相比,DL-Radiomics 模型在内部和外部数据集中正确识别出 43%和 28%无瘢痕患者。

结论

与单独使用 DL 或放射组学模型相比,使用 bSSFP 电影图像的 DL-Radiomics AI 模型作为钆给药前的瘢痕筛查工具表现更好。尽管有其潜力,但该模型的临床实用性仍然有限,需要进一步研究以提高准确性和通用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3fb/9235098/8625201f93da/12968_2022_869_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验