Suppr超能文献

数据革命席卷高等教育:识别智利面临辍学风险的学生。

The data revolution comes to higher education: identifying students at risk of dropout in Chile.

作者信息

Von Hippel Paul T, Hofflinger Alvaro

机构信息

LBJ School of Public Affairs, University of Texas, Austin, Texas, USA.

Núcleo De Ciencias Sociales, Universidad De La Frontera, Temuco, Chile.

出版信息

J High Educ Policy Manag. 2021;43(1):2-23. doi: 10.1080/1360080x.2020.1739800. Epub 2020 Mar 29.

Abstract

Enrolment in higher education has risen dramatically in Latin America, especially in Chile. Yet graduation and persistence rates remain low. One way to improve graduation and persistence is to use data and analytics to identify students at risk of dropout, target interventions, and evaluate interventions' effectiveness at improving student success. We illustrate the potential of this approach using data from eight Chilean universities. Results show that data available at matriculation are only weakly predictive of persistence, while prediction improves dramatically once data on university grades become available. Some predictors of persistence are under policy control. Financial aid predicts higher persistence, and being denied a first-choice major predicts lower persistence. Student success programmes are ineffective at some universities; they are more effective at others, but when effective they often fail to target the highest risk students. Universities should use data regularly and systematically to identify high-risk students, target them with interventions, and evaluate those interventions' effectiveness.

摘要

拉丁美洲高等教育的入学率大幅上升,尤其是在智利。然而,毕业率和留校率仍然很低。提高毕业率和留校率的一种方法是使用数据和分析来识别有辍学风险的学生,确定干预目标,并评估干预措施在提高学生成功率方面的有效性。我们使用来自八所智利大学的数据说明了这种方法的潜力。结果表明,入学时可用的数据对留校率的预测能力较弱,而一旦有了大学成绩数据,预测能力就会大幅提高。一些留校率的预测因素受政策控制。经济援助预示着更高的留校率,而被拒绝第一志愿专业则预示着更低的留校率。学生成功计划在一些大学效果不佳;在其他大学则更有效,但即便有效,它们往往也未能针对风险最高的学生。大学应定期、系统地使用数据来识别高风险学生,针对他们进行干预,并评估这些干预措施的有效性。

相似文献

1
The data revolution comes to higher education: identifying students at risk of dropout in Chile.
J High Educ Policy Manag. 2021;43(1):2-23. doi: 10.1080/1360080x.2020.1739800. Epub 2020 Mar 29.
2
Small class sizes for improving student achievement in primary and secondary schools: a systematic review.
Campbell Syst Rev. 2018 Oct 11;14(1):1-107. doi: 10.4073/csr.2018.10. eCollection 2018.
6
7
Young adults and higher education: barriers and breakthroughs to success.
Future Child. 2010 Spring;20(1):109-32. doi: 10.1353/foc.0.0040.
9
School-based interventions for reducing disciplinary school exclusion: a systematic review.
Campbell Syst Rev. 2018 Jan 9;14(1):i-216. doi: 10.4073/csr.2018.1. eCollection 2018.

引用本文的文献

1
Evaluation of student failure in higher education by an innovative strategy of fuzzy system combined optimization algorithms and AI.
Heliyon. 2024 Apr 3;10(7):e29182. doi: 10.1016/j.heliyon.2024.e29182. eCollection 2024 Apr 15.
2
Profiles of University Students Who Graduate on Time: A Cohort Study from the Chilean Context.
Behav Sci (Basel). 2023 Jul 13;13(7):582. doi: 10.3390/bs13070582.
3
Educational Anomaly Analytics: Features, Methods, and Challenges.
Front Big Data. 2022 Jan 14;4:811840. doi: 10.3389/fdata.2021.811840. eCollection 2021.
4
Who benefits most from studying abroad? A conceptual and empirical overview.
High Educ (Dordr). 2021;82(6):1049-1069. doi: 10.1007/s10734-021-00760-1. Epub 2021 Nov 9.

本文引用的文献

1
Does Achievement Rise Fastest with School Choice, School Resources, or Family Resources? Chile from 2002 to 2013.
Sociol Educ. 2020 Apr;93(2):132-152. doi: 10.1177/0038040719899358. Epub 2020 Jan 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验