Von Hippel Paul T, Hofflinger Alvaro
LBJ School of Public Affairs, University of Texas, Austin, Texas, USA.
Núcleo De Ciencias Sociales, Universidad De La Frontera, Temuco, Chile.
J High Educ Policy Manag. 2021;43(1):2-23. doi: 10.1080/1360080x.2020.1739800. Epub 2020 Mar 29.
Enrolment in higher education has risen dramatically in Latin America, especially in Chile. Yet graduation and persistence rates remain low. One way to improve graduation and persistence is to use data and analytics to identify students at risk of dropout, target interventions, and evaluate interventions' effectiveness at improving student success. We illustrate the potential of this approach using data from eight Chilean universities. Results show that data available at matriculation are only weakly predictive of persistence, while prediction improves dramatically once data on university grades become available. Some predictors of persistence are under policy control. Financial aid predicts higher persistence, and being denied a first-choice major predicts lower persistence. Student success programmes are ineffective at some universities; they are more effective at others, but when effective they often fail to target the highest risk students. Universities should use data regularly and systematically to identify high-risk students, target them with interventions, and evaluate those interventions' effectiveness.
拉丁美洲高等教育的入学率大幅上升,尤其是在智利。然而,毕业率和留校率仍然很低。提高毕业率和留校率的一种方法是使用数据和分析来识别有辍学风险的学生,确定干预目标,并评估干预措施在提高学生成功率方面的有效性。我们使用来自八所智利大学的数据说明了这种方法的潜力。结果表明,入学时可用的数据对留校率的预测能力较弱,而一旦有了大学成绩数据,预测能力就会大幅提高。一些留校率的预测因素受政策控制。经济援助预示着更高的留校率,而被拒绝第一志愿专业则预示着更低的留校率。学生成功计划在一些大学效果不佳;在其他大学则更有效,但即便有效,它们往往也未能针对风险最高的学生。大学应定期、系统地使用数据来识别高风险学生,针对他们进行干预,并评估这些干预措施的有效性。