Suppr超能文献

使用单克隆抗体对牛和人低密度脂蛋白受体进行免疫测定。

Immunoassay of bovine and human low-density-lipoprotein receptors using monoclonal antibodies.

作者信息

Knight B L, Preyer S, Soutar A K

出版信息

Biochem J. 1986 Sep 1;238(2):405-10. doi: 10.1042/bj2380405.

Abstract

Two methods are described for the assay of low-density-lipoprotein (LDL) receptor protein based on the binding of receptor to microtitre plate wells coated with a specific monoclonal antibody or with LDL, followed by detection with radioactive antibody that recognizes a different part of the molecule. The two-antibody procedure detected approx. 2 ng of pure bovine receptor at twice background, and there was a linear relationship on a double-logarithm plot between radioactive antibody bound and the amount of receptor added, up to at least 500 ng of receptor protein per well. The procedure using immobilized LDL was less sensitive and the binding of receptor was inhibited by low concentrations of NaCl, which restricted its usefulness for routine assay of tissue extracts. LDL receptor protein could be readily assayed using the two-antibody procedure in normal human skin fibroblast extracts prepared by bulk-elution from small columns of DEAE-cellulose followed by rapid desalting. No radioactive antibody bound with extracts of cells from a receptor-negative familial hypercholesterolaemic subject. The LDL receptor content of normal fibroblasts preincubated with lipoprotein-deficient serum was estimated, using bovine receptor as standard, to be approx. 60 ng of receptor protein/mg of cell protein.

摘要

本文描述了两种基于低密度脂蛋白(LDL)受体蛋白与包被有特异性单克隆抗体或LDL的微量滴定板孔结合,随后用识别该分子不同部位的放射性抗体进行检测的LDL受体蛋白检测方法。双抗体法在背景值两倍时可检测到约2 ng纯牛受体,在双对数图上,结合的放射性抗体与加入的受体量之间存在线性关系,每孔至少可达500 ng受体蛋白。使用固定化LDL的方法灵敏度较低,受体的结合受到低浓度NaCl的抑制,这限制了其在组织提取物常规检测中的应用。使用双抗体法可以很容易地检测正常人皮肤成纤维细胞提取物中的LDL受体蛋白,这些提取物是通过从小的DEAE - 纤维素柱上批量洗脱,然后快速脱盐制备的。来自受体阴性家族性高胆固醇血症患者的细胞提取物未结合放射性抗体。以牛受体为标准,经脂蛋白缺乏血清预孵育的正常成纤维细胞的LDL受体含量估计约为60 ng受体蛋白/mg细胞蛋白。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验