Safari Mojtaba, Yang Xiaofeng, Fatemi Ali, Archambault Louis
Département de physique, de génie physique et d'optique, et Centre de recherche sur le cancer, Université Laval, Quebec, Quebec, Canada.
Service de physique médicale et radioprotection, Centre Intégré de Cancérologie, CHU de Québec-Université Laval et Centre de recherche du CHU de Québec, Quebec, Quebec, Canada.
Med Phys. 2024 Apr;51(4):2598-2610. doi: 10.1002/mp.16844. Epub 2023 Nov 27.
High-resolution magnetic resonance imaging (MRI) with excellent soft-tissue contrast is a valuable tool utilized for diagnosis and prognosis. However, MRI sequences with long acquisition time are susceptible to motion artifacts, which can adversely affect the accuracy of post-processing algorithms.
This study proposes a novel retrospective motion correction method named "motion artifact reduction using conditional diffusion probabilistic model" (MAR-CDPM). The MAR-CDPM aimed to remove motion artifacts from multicenter three-dimensional contrast-enhanced T1 magnetization-prepared rapid acquisition gradient echo (3D ceT1 MPRAGE) brain dataset with different brain tumor types.
This study employed two publicly accessible MRI datasets: one containing 3D ceT1 MPRAGE and 2D T2-fluid attenuated inversion recovery (FLAIR) images from 230 patients with diverse brain tumors, and the other comprising 3D T1-weighted (T1W) MRI images of 148 healthy volunteers, which included real motion artifacts. The former was used to train and evaluate the model using the in silico data, and the latter was used to evaluate the model performance to remove real motion artifacts. A motion simulation was performed in k-space domain to generate an in silico dataset with minor, moderate, and heavy distortion levels. The diffusion process of the MAR-CDPM was then implemented in k-space to convert structure data into Gaussian noise by gradually increasing motion artifact levels. A conditional network with a Unet backbone was trained to reverse the diffusion process to convert the distorted images to structured data. The MAR-CDPM was trained in two scenarios: one conditioning on the time step of the diffusion process, and the other conditioning on both and T2-FLAIR images. The MAR-CDPM was quantitatively and qualitatively compared with supervised Unet, Unet conditioned on T2-FLAIR, CycleGAN, Pix2pix, and Pix2pix conditioned on T2-FLAIR models. To quantify the spatial distortions and the level of remaining motion artifacts after applying the models, quantitative metrics were reported including normalized mean squared error (NMSE), structural similarity index (SSIM), multiscale structural similarity index (MS-SSIM), peak signal-to-noise ratio (PSNR), visual information fidelity (VIF), and multiscale gradient magnitude similarity deviation (MS-GMSD). Tukey's Honestly Significant Difference multiple comparison test was employed to quantify the difference between the models where p-value was considered statistically significant.
Qualitatively, MAR-CDPM outperformed these methods in preserving soft-tissue contrast and different brain regions. It also successfully preserved tumor boundaries for heavy motion artifacts, like the supervised method. Our MAR-CDPM recovered motion-free in silico images with the highest PSNR and VIF for all distortion levels where the differences were statistically significant (p-values ). In addition, our method conditioned on t and T2-FLAIR outperformed (p-values ) other methods to remove motion artifacts from the in silico dataset in terms of NMSE, MS-SSIM, SSIM, and MS-GMSD. Moreover, our method conditioned on only t outperformed generative models (p-values ) and had comparable performances compared with the supervised model (p-values ) to remove real motion artifacts.
The MAR-CDPM could successfully remove motion artifacts from 3D ceT1 MPRAGE. It is particularly beneficial for elderly who may experience involuntary movements during high-resolution MRI imaging with long acquisition times.
具有出色软组织对比度的高分辨率磁共振成像(MRI)是用于诊断和预后评估的重要工具。然而,采集时间长的MRI序列容易出现运动伪影,这会对后处理算法的准确性产生不利影响。
本研究提出一种名为“使用条件扩散概率模型减少运动伪影”(MAR-CDPM)的新型回顾性运动校正方法。MAR-CDPM旨在从具有不同脑肿瘤类型的多中心三维对比增强T1磁化准备快速采集梯度回波(3D ceT1 MPRAGE)脑数据集中去除运动伪影。
本研究使用了两个可公开获取的MRI数据集:一个包含来自230例患有不同脑肿瘤患者的3D ceT1 MPRAGE和2D T2液体衰减反转恢复(FLAIR)图像,另一个包含148名健康志愿者的3D T1加权(T1W)MRI图像,其中包括真实的运动伪影。前者用于使用计算机模拟数据训练和评估模型,后者用于评估模型去除真实运动伪影的性能。在k空间域中进行运动模拟,以生成具有轻微、中度和重度失真水平的计算机模拟数据集。然后在k空间中实施MAR-CDPM的扩散过程,通过逐渐增加运动伪影水平将结构数据转换为高斯噪声。训练一个具有Unet主干的条件网络来反转扩散过程,将失真图像转换为结构化数据。MAR-CDPM在两种情况下进行训练:一种以扩散过程的时间步长为条件,另一种以时间步长和T2-FLAIR图像为条件。将MAR-CDPM与监督Unet、以T2-FLAIR为条件的Unet、CycleGAN、Pix2pix以及以T2-FLAIR为条件的Pix2pix模型进行定量和定性比较。为了量化应用模型后空间失真和剩余运动伪影的水平,报告了定量指标,包括归一化均方误差(NMSE)、结构相似性指数(SSIM)、多尺度结构相似性指数(MS-SSIM)、峰值信噪比(PSNR)、视觉信息保真度(VIF)和多尺度梯度幅度相似性偏差(MS-GMSD)。采用Tukey's Honestly Significant Difference多重比较检验来量化模型之间的差异,其中p值被认为具有统计学意义。
在定性方面,MAR-CDPM在保留软组织对比度和不同脑区方面优于这些方法。它还像监督方法一样成功地保留了重度运动伪影下的肿瘤边界。我们的MAR-CDPM在所有失真水平下恢复了无运动的计算机模拟图像,其PSNR和VIF最高,差异具有统计学意义(p值)。此外,我们以时间步长和T2-FLAIR为条件的方法在NMSE、MS-SSIM、SSIM和MS-GMSD方面优于(p值)其他方法,从计算机模拟数据集中去除运动伪影。而且,我们仅以时间步长为条件的方法优于生成模型(p值),并且在去除真实运动伪影方面与监督模型具有可比的性能(p值)。
MAR-CDPM可以成功地从3D ceT1 MPRAGE中去除运动伪影。这对于在长时间高分辨率MRI成像过程中可能出现不自主运动的老年人尤其有益。