Suppr超能文献

使用卷积神经网络校正视场外运动伪影。

Correction of out-of-FOV motion artifacts using convolutional neural network.

机构信息

Human Phenome Institute, Fudan University, Shanghai, China; Institute for Medical Imaging Technology (IMIT), School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.

Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.

出版信息

Magn Reson Imaging. 2020 Sep;71:93-102. doi: 10.1016/j.mri.2020.05.004. Epub 2020 May 25.

Abstract

PURPOSE

Subject motion during MRI scan can result in severe degradation of image quality. Existing motion correction algorithms rely on the assumption that no information is missing during motions. However, this assumption does not hold when out-of-FOV motion happens. Currently available algorithms are not able to correct for image artifacts introduced by out-of-FOV motion. The purpose of this study is to demonstrate the feasibility of incorporating convolutional neural network (CNN) derived prior image into solving the out-of-FOV motion problem.

METHODS AND MATERIALS

A modified U-net network was proposed to correct out-of-FOV motion artifacts by incorporating motion parameters into the loss function. A motion model based data fidelity term was applied in combination with the CNN prediction to further improve the motion correction performance. We trained the CNN on 1113 MPRAGE images with simulated oscillating and sudden motion trajectories, and compared our algorithm to a gradient-based autofocusing (AF) algorithm in both 2D and 3D images. Additional experiment was performed to demonstrate the feasibility of transferring the networks to different dataset. We also evaluated the robustness of this algorithm by adding Gaussian noise to the motion parameters. The motion correction performance was evaluated using mean square error (NMSE), peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM).

RESULTS

The proposed algorithm outperformed AF-based algorithm for both 2D (NMSE: 0.0066 ± 0.0009 vs 0.0141 ± 0.008, P < .01; PSNR: 29.60 ± 0.74 vs 21.71 ± 0.27, P < .01; SSIM: 0.89 ± 0.014 vs 0.73 ± 0.004, P < .01) and 3D imaging (NMSE: 0.0067 ± 0.0008 vs 0.070 ± 0.021, P < .01; PSNR: 32.40 ± 1.63 vs 22.32 ± 2.378, P < .01; SSIM: 0.89 ± 0.01 vs 0.62 ± 0.03, P < .01). Robust reconstruction was achieved with 20% data missed due to the out-of-FOV motion.

CONCLUSION

In conclusion, the proposed CNN-based motion correction algorithm can significantly reduce out-of-FOV motion artifacts and achieve better image quality compared to AF-based algorithm.

摘要

目的

在 MRI 扫描过程中,由于受试者的运动,会导致图像质量严重下降。现有的运动校正算法依赖于运动过程中没有信息丢失的假设。然而,当视野外运动发生时,这种假设并不成立。目前可用的算法无法纠正视野外运动引起的图像伪影。本研究的目的是证明将卷积神经网络(CNN)衍生的先验图像纳入解决视野外运动问题的可行性。

方法与材料

提出了一种改进的 U 型网络,通过将运动参数纳入损失函数来校正视野外运动伪影。应用基于运动模型的数据保真项与 CNN 预测相结合,进一步提高了运动校正性能。我们在 1113 张模拟振荡和突发运动轨迹的 MPRAGE 图像上训练了 CNN,并在 2D 和 3D 图像上对我们的算法与基于梯度的自动对焦(AF)算法进行了比较。还进行了额外的实验来证明将网络转移到不同数据集的可行性。我们还通过向运动参数添加高斯噪声来评估该算法的鲁棒性。使用均方误差(NMSE)、峰值信噪比(PSNR)和结构相似性指数(SSIM)评估运动校正性能。

结果

对于 2D(NMSE:0.0066±0.0009 与 0.0141±0.008,P<.01;PSNR:29.60±0.74 与 21.71±0.27,P<.01;SSIM:0.89±0.014 与 0.73±0.004,P<.01)和 3D 成像(NMSE:0.0067±0.0008 与 0.070±0.021,P<.01;PSNR:32.40±1.63 与 22.32±2.378,P<.01;SSIM:0.89±0.01 与 0.62±0.03,P<.01),提出的基于 CNN 的运动校正算法明显优于基于 AF 的算法,能够显著减少视野外运动伪影,提高图像质量。

结论

总之,与基于 AF 的算法相比,所提出的基于 CNN 的运动校正算法可以显著减少视野外运动伪影,获得更好的图像质量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验