Suppr超能文献

通过同时进行材料挤出和热致相分离增材制造聚苯硫醚气凝胶

Additive Manufacturing of Poly(phenylene Sulfide) Aerogels via Simultaneous Material Extrusion and Thermally Induced Phase Separation.

作者信息

Godshall Garrett F, Rau Daniel A, Williams Christopher B, Moore Robert B

机构信息

Department of Chemistry, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA.

Department of Mechanical Engineering, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA.

出版信息

Adv Mater. 2024 Aug;36(34):e2307881. doi: 10.1002/adma.202307881. Epub 2023 Dec 6.

Abstract

Additive manufacturing (AM) of aerogels increases the achievable geometric complexity, and affords fabrication of hierarchically porous structures. In this work, a custom heated material extrusion (MEX) device prints aerogels of poly(phenylene sulfide) (PPS), an engineering thermoplastic, via in situ thermally induced phase separation (TIPS). First, pre-prepared solid gel inks are dissolved at high temperatures in the heated extruder barrel to form a homogeneous polymer solution. Solutions are then extruded onto a room-temperature substrate, where printed roads maintain their bead shape and rapidly solidify via TIPS, thus enabling layer-wise MEX AM. Printed gels are converted to aerogels via postprocessing solvent exchange and freeze-drying. This work explores the effect of ink composition on printed aerogel morphology and thermomechanical properties. Scanning electron microscopy micrographs reveal complex hierarchical microstructures that are compositionally dependent. Printed aerogels demonstrate tailorable porosities (50.0-74.8%) and densities (0.345-0.684 g cm), which align well with cast aerogel analogs. Differential scanning calorimetry thermograms indicate printed aerogels are highly crystalline (≈43%), suggesting that printing does not inhibit the solidification process occurring during TIPS (polymer crystallization). Uniaxial compression testing reveals that compositionally dependent microstructure governs aerogel mechanical behavior, with compressive moduli ranging from 33.0 to 106.5 MPa.

摘要

气凝胶的增材制造(AM)增加了可实现的几何复杂性,并能制造分层多孔结构。在这项工作中,一种定制的加热材料挤出(MEX)设备通过原位热诱导相分离(TIPS)打印出工程热塑性塑料聚苯硫醚(PPS)的气凝胶。首先,将预先制备的固体凝胶油墨在高温下溶解在加热的挤出机料筒中,形成均匀的聚合物溶液。然后将溶液挤出到室温基板上,打印的线条保持其珠状形状,并通过TIPS迅速固化,从而实现逐层MEX AM。通过后处理溶剂交换和冷冻干燥将打印的凝胶转化为气凝胶。这项工作探索了油墨成分对打印气凝胶形态和热机械性能的影响。扫描电子显微镜显微照片揭示了与成分相关的复杂分层微观结构。打印的气凝胶显示出可定制的孔隙率(50.0 - 74.8%)和密度(0.345 - 0.684 g/cm³),这与浇铸气凝胶类似物非常吻合。差示扫描量热法热谱图表明打印的气凝胶具有高度结晶性(≈43%),这表明打印不会抑制TIPS过程中发生的固化过程(聚合物结晶)。单轴压缩测试表明,与成分相关的微观结构决定了气凝胶的力学行为,压缩模量范围为33.0至106.5 MPa。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验