Department of Physics, National Taiwan Normal University, Taipei, Taiwan.
J Med Virol. 2023 Nov;95(11):e29233. doi: 10.1002/jmv.29233.
The COVID-19 pandemic emphasizes the significance of studying coronaviruses (CoVs). This study investigates the evolutionary patterns of 350 CoVs using four structural proteins (S, E, M, and N) and introduces a consensus methodology to construct a comprehensive phylogenomic network. Our clustering of CoVs into 4 genera is consistent with the current CoV classification. Additionally, we calculate network centrality measures to identify CoV strains with significant average weighted degree and betweenness centrality values, with a specific focus on RaTG13 in the beta genus and NGA/A116E7/2006 in the gamma genus. We compare the phylogenetics of CoVs using our distance-based approach and the character-based model with IQ-TREE. Both methods yield largely consistent outcomes, indicating the reliability of our consensus approach. However, it is worth mentioning that our consensus method achieves an approximate 5000-fold increase in speed compared to IQ-TREE when analyzing the data set of 350 CoVs. This improved efficiency enhances the feasibility of conducting large-scale phylogenomic studies on CoVs.
新型冠状病毒肺炎疫情强调了研究冠状病毒(CoV)的重要性。本研究使用四种结构蛋白(S、E、M 和 N)对 350 种 CoV 进行进化模式研究,并提出了一种共识方法来构建综合的系统基因组网络。我们将 CoV 聚类为 4 个属,这与目前的 CoV 分类一致。此外,我们计算了网络中心性度量,以确定具有显著平均加权度和介数中心性值的 CoV 株,特别关注β属中的 RaTG13 和γ属中的 NGA/A116E7/2006。我们使用基于距离的方法和 IQ-TREE 中的基于字符的模型比较了 CoV 的系统发生关系。两种方法的结果基本一致,表明我们的共识方法是可靠的。然而,值得一提的是,当分析 350 种 CoV 的数据集时,我们的共识方法与 IQ-TREE 相比,速度提高了约 5000 倍。这种改进的效率提高了对 CoV 进行大规模系统基因组研究的可行性。