Suppr超能文献

绘制癌症异质性图谱:一种针对亚型和通路的共识网络方法。

Mapping cancer heterogeneity: a consensus network approach to subtypes and pathways.

作者信息

Hu Geng-Ming, Chen Hsin-Wei, Chen Chi-Ming

机构信息

Department of Physics, National Taiwan Normal University, 88 Sec.4 Ting-Chou Rd., Taipei 116, Taiwan.

出版信息

Brief Bioinform. 2025 Aug 31;26(5). doi: 10.1093/bib/bbaf452.

Abstract

We introduce consensus MSClustering, an unsupervised hierarchical network approach that integrates multi-omics data to identify molecular subtypes and conserved pathways across diverse cancers. Using a novel heterogeneity index, we selected 167 key genes with functionally coherent roles validated through Gene Ontology analysis. Applied to 2439 tumors spanning 10 cancer types-and successfully extended to 2675 tumors (12 types) including cases with incomplete molecular data-MSClustering demonstrated: (i) precise classification of major cancer types and breast cancer molecular subtypes; (ii) discovery of novel pan-cancer squamous metaplastic signatures; (iii) exceptional prognostic stratification (log-rank P = 2.3 × 10-46); and (iv) superior performance over existing methods (COCA/SNF) in classification accuracy, cluster robustness, and computational efficiency. The method's multi-scale architecture uniquely resolves breast cancer heterogeneity across biological resolution levels. Pathway analysis further revealed four key oncogenic programs-proteoglycan signaling, chromosomal stability, VEGF-mediated angiogenesis, and drug metabolism-along with disruptions in immune and digestive system functions. This integrative framework marks a significant advancement in cancer genomics by enabling more refined molecular classification, enhanced prognostic insights, and deeper understanding of disease mechanisms. These results highlight the potential of MSClustering to inform the development of clinically relevant biomarkers and support more personalized strategies in precision oncology.

摘要

我们介绍了一致性MSClustering,这是一种无监督的分层网络方法,它整合多组学数据以识别不同癌症中的分子亚型和保守通路。使用一种新颖的异质性指数,我们选择了167个具有功能连贯作用的关键基因,这些基因通过基因本体分析得到验证。应用于涵盖10种癌症类型的2439个肿瘤,并成功扩展到2675个肿瘤(12种类型),包括分子数据不完整的病例,MSClustering显示:(i)对主要癌症类型和乳腺癌分子亚型进行精确分类;(ii)发现新的泛癌鳞状化生特征;(iii)出色的预后分层(对数秩P = 2.3×10-46);以及(iv)在分类准确性、聚类稳健性和计算效率方面优于现有方法(COCA/SNF)。该方法的多尺度架构独特地解决了乳腺癌在生物分辨率水平上的异质性问题。通路分析进一步揭示了四个关键的致癌程序——蛋白聚糖信号传导、染色体稳定性、VEGF介导的血管生成和药物代谢——以及免疫和消化系统功能的破坏。这个整合框架通过实现更精细的分子分类、增强的预后见解以及对疾病机制的更深入理解,标志着癌症基因组学的重大进展。这些结果突出了MSClustering在为临床相关生物标志物的开发提供信息以及支持精准肿瘤学中更个性化策略方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fed5/12409415/5d641b05bf24/bbaf452f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验