Research Center for Advanced Analysis, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan.
AgroDesign Studios, Kashiwa, Chiba, Japan.
Appl Environ Microbiol. 2023 Dec 21;89(12):e0129123. doi: 10.1128/aem.01291-23. Epub 2023 Nov 27.
Nitrification, the microbial conversion of ammonia to nitrate via nitrite, plays a pivotal role in the global nitrogen cycle. However, the excessive use of ammonium-based fertilizers in agriculture has disrupted this cycle, leading to groundwater pollution and greenhouse gas emissions. In this study, we have demonstrated the inhibitory effects of plant-derived juglone and related 1,4-naphthoquinones on the nitrification process in . Notably, the inhibition mechanism is elucidated in which 1,4-naphthoquinones interact with hydroxylamine oxidoreductase, disrupting the electron transfer to cytochrome , a physiological electron acceptor. These findings support the notion that phytochemicals can impede nitrification by interfering with the essential electron transfer process in ammonia oxidation. The findings presented in this article offer valuable insights for the development of strategies aimed at the management of nitrification, reduction of fertilizer utilization, and mitigation of greenhouse gas emissions.
硝化作用,即微生物将氨转化为亚硝酸盐进而转化为硝酸盐的过程,在全球氮循环中起着关键作用。然而,农业中大量使用铵态肥料破坏了这一循环,导致地下水污染和温室气体排放。在本研究中,我们已经证明了植物来源的胡桃醌和相关 1,4-萘醌对硝化过程的抑制作用。值得注意的是,抑制机制得到了阐明,其中 1,4-萘醌与羟胺氧化还原酶相互作用,破坏了向细胞色素 c 的电子转移,细胞色素 c 是一种生理电子受体。这些发现支持了这样一种观点,即植物化学物质可以通过干扰氨氧化过程中的基本电子转移来阻碍硝化作用。本文提出的研究结果为开发旨在管理硝化作用、减少肥料利用和减轻温室气体排放的策略提供了有价值的见解。