Suppr超能文献

基于序模式的多尺度皮质肌耦合网络分析。

Analysis of Multiscale Corticomuscular Coupling Networks Based on Ordinal Patterns.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2024;32:1045-1054. doi: 10.1109/TNSRE.2023.3337229. Epub 2024 Mar 12.

Abstract

The coupled analysis of corticomuscular function based on physiological electrical signals can identify differences in causal relationships between electroencephalogram (EEG) and surface electromyogram (sEMG) in different motor states. The existing methods are mainly devoted to the analysis in the same frequency band, while ignoring the cross-band coupling, which plays an active role in motion control. Considering the inherent multiscale characteristics of physiological signals, a method combining Ordinal Partition Transition Networks (OPTNs) and Multivariate Variational Modal Decomposition (MVMD) was proposed in this paper. The EEG and sEMG were firstly decomposed on a time-frequency scale using MVMD, and then the coupling strength was calculated by the OPTNs to construct a corticomuscular coupling network, which was analyzed with complex network parameters. Experimental data were obtained from a self-acquired dataset consisting of EEG and sEMG of 16 healthy subjects at different sizes of constant grip force. The results showed that the method was superior in representing changes in the causal link among multichannel signals characterized by different frequency bands and grip strength patterns. Complex information transfer between the cerebral cortex and the corresponding muscle groups during constant grip force output from the human upper limb. Furthermore, the sEMG of the flexor digitorum superficialis (FDS) in the low frequency band is the hub in the effective information transmission between the cortex and the muscle, while the importance of each frequency component in this transmission network becomes more dispersed as the grip strength grows, and the increase in coupling strength and node status is mainly in the γ band (30~60Hz). This study provides new ideas for deconstructing the mechanisms of neural control of muscle movements.

摘要

基于生理电信号的皮质肌肉功能的耦合分析可以识别不同运动状态下脑电图(EEG)和表面肌电图(sEMG)之间因果关系的差异。现有的方法主要致力于同一频带内的分析,而忽略了在运动控制中起积极作用的跨频带耦合。考虑到生理信号的固有多尺度特征,本文提出了一种结合有序分区转移网络(OPTNs)和多变量变分模态分解(MVMD)的方法。首先使用 MVMD 在时频尺度上对 EEG 和 sEMG 进行分解,然后使用 OPTNs 计算耦合强度,构建皮质肌肉耦合网络,并分析复杂网络参数。实验数据来自一个由 16 名健康受试者在不同大小的恒定握力下的 EEG 和 sEMG 组成的自采集数据集。结果表明,该方法在表示不同频带和握力模式特征的多通道信号之间因果关系的变化方面具有优势。在人类上肢进行恒定握力输出时,大脑皮层和相应肌肉群之间的复杂信息传递。此外,低频带的指浅屈肌(FDS)sEMG 是皮层和肌肉之间有效信息传递的枢纽,而在这个传输网络中,每个频率分量的重要性随着握力的增加变得更加分散,并且耦合强度和节点状态的增加主要在γ带(30~60Hz)。本研究为剖析肌肉运动的神经控制机制提供了新的思路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验