Suppr超能文献

深 qGFP:一种通用深度学习辅助的微流控器中绿色荧光蛋白标记生物样本精确定量的流水线。

Deep-qGFP: A Generalist Deep Learning Assisted Pipeline for Accurate Quantification of Green Fluorescent Protein Labeled Biological Samples in Microreactors.

机构信息

Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999 077, China.

Centre for Biomaterials, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999 077, China.

出版信息

Small Methods. 2024 Mar;8(3):e2301293. doi: 10.1002/smtd.202301293. Epub 2023 Nov 27.

Abstract

Absolute quantification of biological samples provides precise numerical expression levels, enhancing accuracy, and performance for rare templates. Current methodologies, however, face challenges-flow cytometers are costly and complex, whereas fluorescence imaging, relying on software or manual counting, is time-consuming and error-prone. It is presented that Deep-qGFP, a deep learning-aided pipeline for the automated detection and classification of green fluorescent protein (GFP) labeled microreactors, enables real-time absolute quantification. This approach achieves an accuracy of 96.23% and accurately measures the sizes and occupancy status of microreactors using standard laboratory fluorescence microscopes, providing precise template concentrations. Deep-qGFP demonstrates remarkable speed, quantifying over 2000 microreactors across ten images in just 2.5 seconds, with a dynamic range of 56.52-1569.43 copies µL . The method demonstrates impressive generalization capabilities, successfully applied to various GFP-labeling scenarios, including droplet-based, microwell-based, and agarose-based applications. Notably, Deep-qGFP is the first all-in-one image analysis algorithm successfully implemented in droplet digital polymerase chain reaction (PCR), microwell digital PCR, droplet single-cell sequencing, agarose digital PCR, and bacterial quantification, without requiring transfer learning, modifications, or retraining. This makes Deep-qGFP readily applicable in biomedical laboratories and holds potential for broader clinical applications.

摘要

绝对定量生物样本提供了精确的数值表达水平,增强了稀有模板的准确性和性能。然而,目前的方法存在挑战——流式细胞仪既昂贵又复杂,而依赖于软件或手动计数的荧光成像既耗时又容易出错。提出了 Deep-qGFP,这是一种深度学习辅助的绿色荧光蛋白 (GFP) 标记微反应器自动检测和分类的流水线,能够实现实时绝对定量。该方法的准确率达到 96.23%,能够使用标准实验室荧光显微镜准确测量微反应器的大小和占用状态,提供精确的模板浓度。Deep-qGFP 具有显著的速度优势,仅需 2.5 秒即可对 10 张图像中的 2000 多个微反应器进行定量分析,动态范围为 56.52-1569.43 拷贝 µL。该方法具有令人印象深刻的泛化能力,成功应用于各种 GFP 标记场景,包括基于液滴、基于微孔和基于琼脂糖的应用。值得注意的是,Deep-qGFP 是第一个成功应用于液滴数字聚合酶链反应 (PCR)、微孔数字 PCR、液滴单细胞测序、琼脂糖数字 PCR 和细菌定量的全集成图像分析算法,无需迁移学习、修改或重新训练。这使得 Deep-qGFP 易于在生物医学实验室中应用,并有可能在更广泛的临床应用中得到应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验