Zhang Wei, Sun Yuanhe, Ren Zhiguo, Zhao Yuanxin, Yao Zeying, Lei Qi, Si Jingying, Li Zhao, Ren Xiaochuan, Li Xiaolong, Li Aiguo, Wen Wen, Zhu Daming
Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.
Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China.
Adv Sci (Weinh). 2024 Jan;11(2):e2304146. doi: 10.1002/advs.202304146. Epub 2023 Nov 27.
Conversion-type electrodes offer a promising multielectron transfer alternative to intercalation hosts with potentially high-capacity release in batteries. However, the poor cycle stability severely hinders their application, especially in aqueous multivalence-ion systems, which can fundamentally impute to anisotropic ion diffusion channel collapse in pristine crystals and irreversible bond fracture during repeated conversion. Here, an amorphous bismuth sulfide (a-BS) formed in situ with unprecedentedly self-controlled moderate conversion Cu storage is proposed to comprehensively regulate the isotropic ion diffusion channels and highly reversible bond evolution. Operando synchrotron X-ray diffraction and substantive verification tests reveal that the total destruction of the Bi─S bond and unsustainable deep alloying are fully restrained. The amorphous structure with robust ion diffusion channels, unique self-controlled moderate conversion, and high electrical conductivity discharge products synergistically boosts the capacity (326.7 mAh g at 1 A g ), rate performance (194.5 mAh g at 10 A g ), and long-lifespan stability (over 8000 cycles with a decay rate of only 0.02 ‰ per cycle). Moreover, the a-BS Cu ‖Zn hybrid ion battery can well supply a stable energy density of 238.6 Wh kg at 9760 W kg . The intrinsically high-stability conversion mechanism explored on amorphous electrodes provides a new opportunity for advanced aqueous storage.
转换型电极提供了一种很有前景的多电子转移替代方案,可替代插层主体,在电池中具有潜在的高容量释放。然而,较差的循环稳定性严重阻碍了它们的应用,尤其是在水系多价离子体系中,这从根本上可归因于原始晶体中各向异性离子扩散通道的坍塌以及反复转换过程中不可逆的键断裂。在此,提出了一种原位形成的具有前所未有的自控适度铜存储的非晶态硫化铋(a-BS),以全面调节各向同性离子扩散通道和高度可逆的键演化。同步辐射X射线衍射原位测试和大量验证试验表明,Bi─S键的完全破坏和不可持续的深度合金化得到了充分抑制。具有强大离子扩散通道、独特的自控适度转换和高电导率放电产物的非晶态结构协同提高了容量(1 A g时为326.7 mAh g)、倍率性能(10 A g时为194.5 mAh g)和长寿命稳定性(超过8000次循环,每次循环的衰减率仅为0.02‰)。此外,a-BS||Cu||Zn混合离子电池在9760 W kg时能够很好地提供238.6 Wh kg的稳定能量密度。在非晶态电极上探索的本质上高稳定性的转换机制为先进的水系储能提供了新的机遇。