Suppr超能文献

双能量计算机断层扫描物质分解能否提高对头颈部鳞状细胞癌患者生存预测的影像组学能力?一项初步研究。

Does Dual-Energy Computed Tomography Material Decomposition Improve Radiomics Capability to Predict Survival in Head and Neck Squamous Cell Carcinoma Patients? A Preliminary Investigation.

作者信息

Bernatz Simon, Böth Ines, Ackermann Jörg, Burck Iris, Mahmoudi Scherwin, Lenga Lukas, Martin Simon S, Scholtz Jan-Erik, Koch Vitali, Grünewald Leon D, Koch Ina, Stöver Timo, Wild Peter J, Winkelmann Ria, Vogl Thomas J, Pinto Dos Santos Daniel

机构信息

From the Department of Diagnostic and Interventional Radiology.

Department of Molecular Bioinformatics, Institute of Computer Science, Johann Wolfgang Goethe-University.

出版信息

J Comput Assist Tomogr. 2024;48(2):323-333. doi: 10.1097/RCT.0000000000001551. Epub 2023 Sep 26.

Abstract

OBJECTIVE

Our study objective was to explore the additional value of dual-energy CT (DECT) material decomposition for squamous cell carcinoma of the head and neck (SCCHN) survival prognostication.

METHODS

A group of 50 SCCHN patients (male, 37; female, 13; mean age, 63.6 ± 10.82 years) with baseline head and neck DECT between September 2014 and August 2020 were retrospectively included. Primary tumors were segmented, radiomics features were extracted, and DECT material decomposition was performed. We used independent train and validation datasets with cross-validation and 100 independent iterations to identify prognostic signatures applying elastic net (EN) and random survival forest (RSF). Features were ranked and intercorrelated according to their prognostic importance. We benchmarked the models against clinical parameters. Intraclass correlation coefficients were used to analyze the interreader variation.

RESULTS

The exclusively radiomics-trained models achieved similar ( P = 0.947) prognostic performance of area under the curve (AUC) = 0.784 (95% confidence interval [CI], 0.775-0.812) (EN) and AUC = 0.785 (95% CI, 0.759-0.812) (RSF). The additional application of DECT material decomposition did not improve the model's performance (EN, P = 0.594; RSF, P = 0.198). In the clinical benchmark, the top averaged AUC value of 0.643 (95% CI, 0.611-0.675) was inferior to the quantitative imaging-biomarker models ( P < 0.001). A combined imaging and clinical model did not improve the imaging-based models ( P > 0.101). Shape features revealed high prognostic importance.

CONCLUSIONS

Radiomics AI applications may be used for SCCHN survival prognostication, but the spectral information of DECT material decomposition did not improve the model's performance in our preliminary investigation.

摘要

目的

本研究旨在探讨双能CT(DECT)物质分解对头颈部鳞状细胞癌(SCCHN)生存预后的附加价值。

方法

回顾性纳入2014年9月至2020年8月间接受头颈部基线DECT检查的50例SCCHN患者(男性37例,女性13例;平均年龄63.6±10.82岁)。对原发性肿瘤进行分割,提取影像组学特征,并进行DECT物质分解。我们使用独立的训练和验证数据集,通过交叉验证和100次独立迭代,应用弹性网络(EN)和随机生存森林(RSF)来识别预后特征。根据特征的预后重要性进行排序和相互关联分析。我们将模型与临床参数进行了比较。使用组内相关系数分析阅片者间的差异。

结果

仅基于影像组学训练的模型在曲线下面积(AUC)方面具有相似的(P = 0.947)预后性能,EN模型的AUC = 0.784(95%置信区间[CI],0.775 - 0.812),RSF模型的AUC = 0.785(95%CI,0.759 - 0.812)。DECT物质分解的附加应用并未改善模型性能(EN,P = 0.594;RSF,P = 0.198)。在临床比较中,最高平均AUC值为0.643(95%CI,0.611 - 0.675),低于定量影像生物标志物模型(P < 0.001)。影像与临床联合模型并未改善基于影像的模型(P > 0.101)。形状特征显示出较高的预后重要性。

结论

影像组学人工智能应用可用于SCCHN生存预后评估,但在我们的初步研究中,DECT物质分解的光谱信息并未改善模型性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验