Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
Dr. Senckenberg Institute for Pathology, University Hospital Frankfurt, Goethe University Frankfurt am Main, 60590, Frankfurt am Main, Germany.
Int J Comput Assist Radiol Surg. 2023 Oct;18(10):1829-1839. doi: 10.1007/s11548-023-02854-w. Epub 2023 Mar 6.
The radiologists' workload is increasing, and computational imaging techniques may have the potential to identify visually unequivocal lesions, so that the radiologist can focus on equivocal and critical cases. The purpose of this study was to assess radiomics versus dual-energy CT (DECT) material decomposition to objectively distinguish visually unequivocal abdominal lymphoma and benign lymph nodes.
Retrospectively, 72 patients [m, 47; age, 63.5 (27-87) years] with nodal lymphoma (n = 27) or benign abdominal lymph nodes (n = 45) who had contrast-enhanced abdominal DECT between 06/2015 and 07/2019 were included. Three lymph nodes per patient were manually segmented to extract radiomics features and DECT material decomposition values. We used intra-class correlation analysis, Pearson correlation and LASSO to stratify a robust and non-redundant feature subset. Independent train and test data were applied on a pool of four machine learning models. Performance and permutation-based feature importance was assessed to increase the interpretability and allow for comparison of the models. Top performing models were compared by the DeLong test.
About 38% (19/50) and 36% (8/22) of the train and test set patients had abdominal lymphoma. Clearer entity clusters were seen in t-SNE plots using a combination of DECT and radiomics features compared to DECT features only. Top model performances of AUC = 0.763 (CI = 0.435-0.923) were achieved for the DECT cohort and AUC = 1.000 (CI = 1.000-1.000) for the radiomics feature cohort to stratify visually unequivocal lymphomatous lymph nodes. The performance of the radiomics model was significantly (p = 0.011, DeLong) superior to the DECT model.
Radiomics may have the potential to objectively stratify visually unequivocal nodal lymphoma versus benign lymph nodes. Radiomics seems superior to spectral DECT material decomposition in this use case. Therefore, artificial intelligence methodologies may not be restricted to centers with DECT equipment.
放射科医生的工作量不断增加,而计算成像技术可能有潜力识别出具有明确影像学特征的病变,从而使放射科医生能够专注于具有疑问和关键特征的病例。本研究旨在评估放射组学与双能 CT(DECT)物质分解技术,以客观地区分具有明确影像学特征的腹部淋巴瘤和良性淋巴结。
回顾性纳入 2015 年 6 月至 2019 年 7 月间在我院接受腹部增强 DECT 检查的 72 例患者(男,47 例;年龄,63.5(27-87)岁),其中 27 例为结内淋巴瘤,45 例为良性腹部淋巴结。每位患者均手动分割 3 个淋巴结,以提取放射组学特征和 DECT 物质分解值。我们采用组内相关分析、Pearson 相关分析和 LASSO 算法对稳健且非冗余的特征子集进行分层。将独立的训练和测试数据应用于 4 种机器学习模型中。通过排列特征重要性评估来提高模型的可解释性,并允许对模型进行比较。采用 DeLong 检验比较最优模型的性能。
训练集和测试集中分别有 38%(19/50)和 36%(8/22)的患者患有腹部淋巴瘤。与仅使用 DECT 特征相比,使用 DECT 和放射组学特征的 t-SNE 图谱能够更清晰地显示实体聚类。在 DECT 队列中,AUC 为 0.763(CI=0.435-0.923)的最优模型性能,在放射组学特征队列中,AUC 为 1.000(CI=1.000-1.000),以分层具有明确影像学特征的淋巴瘤性淋巴结。放射组学模型的性能明显优于 DECT 模型(p=0.011,DeLong)。
放射组学可能有潜力客观地区分具有明确影像学特征的腹部淋巴瘤与良性淋巴结。在这种情况下,放射组学似乎优于光谱 DECT 物质分解。因此,人工智能方法可能不仅限于具有 DECT 设备的中心。