Suppr超能文献

基于人群的研究:建立并验证预测宫颈腺癌总生存期的列线图。

Development and validation of a nomogram to predict overall survival for cervical adenocarcinoma: A population-based study.

机构信息

Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, China.

Department of Radiation Oncology, Jilin Cancer Hospital, Changchun, China.

出版信息

Medicine (Baltimore). 2023 Nov 24;102(47):e36226. doi: 10.1097/MD.0000000000036226.

Abstract

This study aimed to develop and validate a nomogram for predicting the overall survival of cervical adenocarcinoma (CAC) patients using a large database comprising patients with different ethnicities. We enrolled primary CAC cases with complete clinicopathological and survival data from the Surveillance, Epidemiology, and End Results program during 2004 to 2015. For training set samples, this work applied the Cox regression model to obtain factors independently associated with patient prognosis, which could be incorporated in constructing the nomogram. Altogether 3096 qualified cases were enrolled, their survival ranged from 0 to 155 (median, 45.5) months. As revealed by multivariate regression, age, marital status, tumor size, grade, International Federation of Gynecology and Obstetrics (FIGO) classification, pelvic lymph node metastasis, surgery, and chemotherapy served as the factors to independently predict CAC (all P < .05). We later incorporated these factors for constructing the nomogram. According to the concordance index determined, this nomogram had superior discrimination over FIGO classification system (all P < .001). Based on calibration plot, the predicted value was consistent with actual measurement. As revealed by time-independent area under the curves, our constructed nomogram had superior 5-year overall survival over FIGO system. Additionally, according to decision curve analysis, our constructed nomogram showed high clinical usefulness as well as favorable discrimination. Our constructed nomogram attains favorable performances, indicating that it may be applied in predicting survival for CAC patients.

摘要

本研究旨在开发和验证一种列线图,以预测使用包含不同种族患者的大型数据库的宫颈腺癌(CAC)患者的总生存期。我们从 2004 年至 2015 年的监测、流行病学和最终结果(SEER)计划中招募了具有完整临床病理和生存数据的原发性 CAC 病例。对于训练集样本,本工作应用 Cox 回归模型获得与患者预后独立相关的因素,这些因素可用于构建列线图。共纳入 3096 例合格病例,其生存时间从 0 到 155(中位数为 45.5)个月。多变量回归显示,年龄、婚姻状况、肿瘤大小、分级、国际妇产科联合会(FIGO)分类、盆腔淋巴结转移、手术和化疗是独立预测 CAC 的因素(均 P<0.05)。我们随后将这些因素纳入构建列线图。根据确定的一致性指数,该列线图在区分能力上优于 FIGO 分类系统(均 P<0.001)。根据校准图,预测值与实际测量值一致。根据时间独立的曲线下面积,我们构建的列线图在 5 年总生存率方面优于 FIGO 系统。此外,根据决策曲线分析,我们构建的列线图具有较高的临床实用性和良好的区分能力。我们构建的列线图表现良好,表明它可用于预测 CAC 患者的生存情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1169/10681498/6bd8d64966b5/medi-102-e36226-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验