Partohaghighi Mohammad, Akgül Ali
Department of Mathematics, Clarkson University Potsdam, NY 13699, USA.
Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon.
Kuwait J Sci. 2023 Apr;50(2):153-162. doi: 10.1016/j.kjs.2023.02.021. Epub 2023 Apr 20.
We investigate a mathematical system of the recent COVID-19 disease focusing particularly on the transmissibility of individuals with different types of signs under the Caputo fractional derivative. To get the approximate solutions of the fractional order system we employ the fractional-order Alpert multiwavelet(FAM). The fractional operational integration matrix of Riemann-Liouville (RLFOMI) employing the FAM functions is considered. The origin system will be transformed into a system of algebraic equations. Also, an error estimation of the supposed scheme is considered. Satisfactory results are gained under various values of fractional order with the chosen initial conditions (ICs).
我们研究了近期新冠肺炎疾病的一个数学系统,特别关注在卡普托分数阶导数下不同症状类型个体的传播性。为了得到分数阶系统的近似解,我们采用分数阶阿尔珀特多小波(FAM)。考虑了使用FAM函数的黎曼 - 刘维尔分数阶运算积分矩阵(RLFOMI)。原系统将被转化为一个代数方程组。此外,还考虑了所提出方案的误差估计。在选定的初始条件(ICs)下,对于不同的分数阶值都获得了令人满意的结果。