Suppr超能文献

作为因果推理的分层运动感知

Hierarchical motion perception as causal inference.

作者信息

Shivkumar Sabyasachi, DeAngelis Gregory C, Haefner Ralf M

机构信息

Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14627, USA.

Zuckerman Mind Brain Behavior Institute, Columbia University, NY 10027, USA.

出版信息

bioRxiv. 2024 Oct 18:2023.11.18.567582. doi: 10.1101/2023.11.18.567582.

Abstract

Since motion can only be defined relative to a reference frame, which reference frame guides perception? A century of psychophysical studies has produced conflicting evidence: retinotopic, egocentric, world-centric, or even object-centric. We introduce a hierarchical Bayesian model mapping retinal velocities to perceived velocities. Our model mirrors the structure in the world, in which visual elements move within causally connected reference frames. Friction renders velocities in these reference frames mostly stationary, formalized by an additional delta component (at zero) in the prior. Inverting this model automatically segments visual inputs into groups, groups into supergroups, etc. and "perceives" motion in the appropriate reference frame. Critical model predictions are supported by two new experiments, and fitting our model to the data allows us to infer the subjective set of reference frames used by individual observers. Our model provides a quantitative normative justification for key Gestalt principles providing inspiration for building better models of visual processing in general.

摘要

由于运动只能相对于参考系来定义,那么哪个参考系引导着感知呢?一个世纪的心理物理学研究产生了相互矛盾的证据:视网膜拓扑的、以自我为中心的、以世界为中心的,甚至是以物体为中心的。我们引入了一个分层贝叶斯模型,将视网膜速度映射到感知速度。我们的模型反映了世界中的结构,其中视觉元素在因果相连的参考系中移动。摩擦力使这些参考系中的速度大多保持静止,这在前验中通过一个额外的δ分量(在零处)形式化。对这个模型求逆会自动将视觉输入分割成组,组再分成超组等等,并在适当的参考系中“感知”运动。两项新实验支持了关键的模型预测,将我们的模型拟合到数据中使我们能够推断个体观察者使用的主观参考系集。我们的模型为关键的格式塔原则提供了定量的规范依据,总体上为构建更好的视觉处理模型提供了灵感。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验