Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
Department of Psychology, Harvard University, Cambridge, MA, USA.
Nat Commun. 2022 Dec 1;13(1):7403. doi: 10.1038/s41467-022-34805-5.
Identifying the structure of motion relations in the environment is critical for navigation, tracking, prediction, and pursuit. Yet, little is known about the mental and neural computations that allow the visual system to infer this structure online from a volatile stream of visual information. We propose online hierarchical Bayesian inference as a principled solution for how the brain might solve this complex perceptual task. We derive an online Expectation-Maximization algorithm that explains human percepts qualitatively and quantitatively for a diverse set of stimuli, covering classical psychophysics experiments, ambiguous motion scenes, and illusory motion displays. We thereby identify normative explanations for the origin of human motion structure perception and make testable predictions for future psychophysics experiments. The proposed online hierarchical inference model furthermore affords a neural network implementation which shares properties with motion-sensitive cortical areas and motivates targeted experiments to reveal the neural representations of latent structure.
识别环境中运动关系的结构对于导航、跟踪、预测和追逐至关重要。然而,对于视觉系统如何从不稳定的视觉信息流中在线推断这种结构,人们知之甚少。我们提出在线分层贝叶斯推理作为一种原则性的解决方案,用于解释大脑如何解决这个复杂的感知任务。我们推导出一种在线期望最大化算法,该算法定性和定量地解释了多种刺激的人类感知,包括经典心理物理学实验、模糊运动场景和错觉运动显示。因此,我们确定了人类运动结构感知的起源的规范性解释,并为未来的心理物理学实验做出了可测试的预测。所提出的在线分层推理模型还提供了神经网络实现,该实现与运动敏感的皮层区域具有相似的特性,并激发了有针对性的实验来揭示潜在结构的神经表示。