Francis Vanessa I, Liddle Corin, Camacho Emma, Kulkarni Madhura, Junior Samuel R S, Harvey Jamie A, Ballou Elizabeth R, Thomson Darren D, Hardwick J Marie, Casadevall Arturo, Witton Jonathan, Coelho Carolina
MRC Centre for Medical Mycology at University of Exeter, University of Exeter, Exeter, EX4 4QD, UK.
Faculty of Health and Life Sciences, University of Exeter, EX4 4QD, UK.
bioRxiv. 2023 Nov 14:2023.11.13.564824. doi: 10.1101/2023.11.13.564824.
The fungus causes lethal meningitis in humans with weakened immune systems and is estimated to account for 10-15% of AIDS-associated deaths worldwide. There are major gaps in our understanding of how this environmental fungus evades the immune system and invades the mammalian brain before the onset of overt symptoms. To investigate the dynamics of C. neoformans tissue invasion, we mapped early fungal localisation and host cell interactions at early times in infected brain, lung, and upper airways using mouse models of systemic and airway infection. To enable this, we developed an in situ imaging pipeline capable of measuring large volumes of tissue while preserving anatomical and cellular information by combining thick tissue sections, tissue clarification, and confocal imaging. Made possible by these techniques, we confirm high fungal burden in mouse upper airway turbinates after nasal inoculation. Surprisingly, most yeasts in turbinates were titan cells, indicating this microenvironment enables titan cell formation with faster kinetics than reported in mouse lungs. Importantly, we observed one instance of fungal cells enmeshed in lamina propria of upper airways, suggesting penetration of airway mucosa as a possible route of tissue invasion and dissemination to the bloodstream. We extend previous literature positing bloodstream dissemination of , via imaging within blood vessels of mouse lungs and finding viable fungi in the bloodstream of mice a few days after intranasal infection, suggesting that bloodstream access can occur via lung alveoli. In a model of systemic cryptococcosis, we show that as early as 24 h post infection, majority of cells traversed the blood-brain barrier, and are engulfed or in close proximity to microglia. Our work establishes that can breach multiple tissue barriers within the first days of infection. This work presents a new method for investigating cryptococcal invasion mechanisms and demonstrates microglia as the primary cells responding to C. neoformans invasion.
这种真菌会导致免疫系统较弱的人患上致命性脑膜炎,据估计,它在全球与艾滋病相关的死亡病例中占10%至15%。在对这种环境真菌如何在明显症状出现之前逃避免疫系统并侵入哺乳动物大脑的理解上,我们还存在重大差距。为了研究新型隐球菌组织侵袭的动态过程,我们利用系统性感染和气道感染的小鼠模型,绘制了感染早期大脑、肺部和上呼吸道中真菌的早期定位以及宿主细胞相互作用情况。为此,我们开发了一种原位成像流程,通过结合厚组织切片、组织透明化和共聚焦成像,能够在保留解剖和细胞信息的同时测量大量组织。借助这些技术,我们证实了经鼻腔接种后小鼠上呼吸道鼻甲中有高真菌负荷。令人惊讶的是,鼻甲中的大多数酵母细胞是巨细胞,这表明这种微环境能够以比小鼠肺部报道的更快的动力学形成巨细胞。重要的是,我们观察到一个真菌细胞嵌入上呼吸道固有层的实例,这表明气道黏膜的穿透可能是组织侵袭和扩散到血液中的一条途径。我们通过对小鼠肺部血管内成像并在鼻内感染几天后在小鼠血液中发现活真菌,扩展了之前关于新型隐球菌通过血液传播的文献,这表明可以通过肺泡进入血液。在系统性隐球菌病模型中,我们表明早在感染后24小时,大多数新型隐球菌细胞就穿过了血脑屏障,并被小胶质细胞吞噬或与之紧密相邻。我们的工作证实新型隐球菌在感染后的头几天内可以突破多个组织屏障。这项工作提出了一种研究隐球菌侵袭机制的新方法,并证明小胶质细胞是对新型隐球菌侵袭作出反应的主要细胞。