Johnstone Joshua N, Mirth Christen K, Johnson Travis K, Schittenhelm Ralf B, Piper Matthew D W
School of Biological Sciences, Monash University, Melbourne, Australia.
Department of Biochemistry and Chemistry, and La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia.
bioRxiv. 2023 Nov 14:2023.11.14.566972. doi: 10.1101/2023.11.14.566972.
Many mechanistic theories of ageing argue that a progressive failure of somatic maintenance, the use of energy and resources to prevent and repair damage to the cell, underpins ageing. To sustain somatic maintenance an organism must acquire dozens of essential nutrients from the diet, including essential amino acids (EAAs), which are physiologically limiting for many animals. In , adulthood deprivation of each individual EAA yields vastly different lifespan trajectories, and adulthood deprivation of one EAA, phenylalanine (Phe), has no associated lifespan cost; this is despite each EAA being strictly required for growth and reproduction. Moreover, survival under any EAA deprivation depends entirely on the conserved AA sensor GCN2, a component of the integrated stress response (ISR), suggesting that a novel ISR-mediated mechanism sustains lifelong somatic maintenance during EAA deprivation. Here we investigated this mechanism, finding that flies chronically deprived of dietary Phe continue to incorporate Phe into new proteins, and that challenging flies to increase the somatic requirement for Phe shortens lifespan under Phe deprivation. Further, we show that autophagy is required for full lifespan under Phe deprivation, and that activation of the ISR can partially rescue the shortened lifespan of -nulls under Phe deprivation. We therefore propose a mechanism by which GCN2, via the ISR, activates autophagy during EAA deprivation, breaking down a larvally-acquired store of EAAs to support somatic maintenance. These data refine our understanding of the strategies by which flies sustain lifelong somatic maintenance, which determines length of life in response to changes in the nutritional environment.
许多衰老的机制理论认为,体细胞维持功能的逐渐衰退,即利用能量和资源来预防和修复细胞损伤,是衰老的基础。为了维持体细胞维持功能,生物体必须从饮食中获取数十种必需营养素,包括必需氨基酸(EAA),而许多动物在生理上对必需氨基酸有需求限制。在[具体研究中],成年期缺乏每种单独的必需氨基酸会产生截然不同的寿命轨迹,而成年期缺乏一种必需氨基酸——苯丙氨酸(Phe),却没有相关的寿命代价;尽管每种必需氨基酸对于生长和繁殖都是严格必需的。此外,在任何必需氨基酸缺乏情况下的存活完全依赖于保守的氨基酸传感器GCN2,它是综合应激反应(ISR)的一个组成部分,这表明一种新的ISR介导机制在必需氨基酸缺乏期间维持终身的体细胞维持功能。在这里,我们研究了这种机制,发现长期缺乏饮食中苯丙氨酸的果蝇会继续将苯丙氨酸掺入新蛋白质中,并且对果蝇施加挑战以增加对苯丙氨酸的体细胞需求会缩短苯丙氨酸缺乏情况下的寿命。此外,我们表明自噬是苯丙氨酸缺乏情况下完整寿命所必需的,并且ISR的激活可以部分挽救苯丙氨酸缺乏情况下自噬缺陷型果蝇缩短的寿命。因此,我们提出了一种机制,通过该机制GCN2在必需氨基酸缺乏期间通过ISR激活自噬,分解幼虫期获得的必需氨基酸储备以支持体细胞维持功能。这些数据完善了我们对果蝇维持终身体细胞维持功能策略的理解,而这种策略决定了果蝇对营养环境变化做出反应的寿命长度。